统考版2025届高考数学一轮复习课后限时集训42空间图形的基本关系与公理理含解析北师大版_第1页
统考版2025届高考数学一轮复习课后限时集训42空间图形的基本关系与公理理含解析北师大版_第2页
统考版2025届高考数学一轮复习课后限时集训42空间图形的基本关系与公理理含解析北师大版_第3页
统考版2025届高考数学一轮复习课后限时集训42空间图形的基本关系与公理理含解析北师大版_第4页
统考版2025届高考数学一轮复习课后限时集训42空间图形的基本关系与公理理含解析北师大版_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE课后限时集训(四十二)空间图形的基本关系与公理建议用时:40分钟一、选择题1.a,b,c是两两不同的三条直线,下面四个命题中,真命题是()A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥cC[若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.故选C.]2.给出下列说法:①梯形的四个顶点共面;②三条平行直线共面;③有三个公共点的两个平面重合;④三条直线两两相交,可以确定1个或3个平面.其中正确的序号是()A.① B.①④C.②③ D.③④B[①明显正确;②错误,三条平行直线可能确定1个或3个平面;③若三个点共线,则两个平面相交,故③错误;④明显正确.故选B.]3.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()ABCDD[A,B,C图中四点肯定共面,D中四点不共面.]4.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线ABC.直线CDD.直线BCC[由题意知,D∈l,lβ,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.]5.(2024·兰州模拟)如图所示,在正方体ABCD­A1B1C1D1中,若点E为BC的中点,点F为B1C1的中点,则异面直线AF与C1EA.eq\f(2,3) B.eq\f(\r(5),3)C.eq\f(\r(5),2) D.eq\f(2\r(5),5)B[不妨设正方体的棱长为1,取A1D1的中点G,连接AG,易知GA∥C1E,则∠FAG(或其补角)为异面直线AF与C1E所成的角.连接FG(图略),在△AFG中,AG=eq\r(12+\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))2)=eq\f(\r(5),2),AF=eq\r(12+\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(5),2)))2)=eq\f(3,2),FG=1,于是cos∠FAG=eq\f(\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))2+\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(5),2)))2-12,2×\f(3,2)×\f(\r(5),2))=eq\f(\r(5),3),故选B.]6.在正三棱柱ABC­A1B1C1中,AB=eq\r(2)BB1,则AB1与BC1所成角的大小为()A.30° B.60°C.75° D.90°D[将正三棱柱ABC­A1B1C1补为四棱柱ABCD­A1B1C1D1,连接C1D,BD(图略),则C1D∥B1A,∠BC1D为所求角或其补角.设BB1=eq\r(2),则BC=CD=2,∠BCD=120°,BD=2eq\r(3),又因为BC1=C1D=eq\r(6),所以∠BC1D=90°.]二、填空题7.已知AE是长方体ABCD­EFGH的一条棱,则在这个长方体的十二条棱中,与AE异面且垂直的棱共有________条.4[如图,作出长方体ABCD­EFGH.在这个长方体的十二条棱中,与AE异面且垂直的棱有:GH、GF、BC、CD.共4条.]8.已知在四面体ABCD中,E,F分别是AC,BD的中点.若AB=2,CD=4,EF⊥AB,则EF与CD所成角的度数为________.30°[如图,设G为AD的中点,连接GF,GE,则GF,GE分别为△ABD,△ACD的中位线.由此可得GF∥AB,且GF=eq\f(1,2)AB=1,GE∥CD,且GE=eq\f(1,2)CD=2,∴∠FEG或其补角即为EF与CD所成的角.又∵EF⊥AB,GF∥AB,∴EF⊥GF.因此,在Rt△EFG中,GF=1,GE=2,sin∠GEF=eq\f(GF,GE)=eq\f(1,2),可得∠GEF=30°,∴EF与CD所成角的度数为30°.]9.在下列四个图中,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________.(填序号)①②③④②④[图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.]eq\a\vs4\al(三、解答题)10.如图所示,四边形ABEF和ABCD都是梯形,BC綊eq\f(1,2)AD,BE綊eq\f(1,2)FA,G,H分别为FA,FD的中点.(1)证明:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?[解](1)证明:由已知FG=GA,FH=HD,可得GH綊eq\f(1,2)AD.又BC綊eq\f(1,2)AD,∴GH綊BC.∴四边形BCHG为平行四边形.(2)∵BE綊eq\f(1,2)AF,G为FA的中点,∴BE綊FG,∴四边形BEFG为平行四边形,∴EF∥BG.由(1)知BG綊CH,∴EF∥CH,∴EF与CH共面.又D∈FH,∴C,D,F,E四点共面.11.如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF与BD是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角.[解](1)证明:假设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A,B,C,D在同一平面内,这与A是△BCD所在平面外的一点相冲突.故直线EF与BD是异面直线.(2)取CD的中点G,连接EG,FG,则AC∥FG,EG∥BD,所以相交直线EF与EG所成的角,即为异面直线EF与BD所成的角.又因为AC⊥BD,则FG⊥EG.在Rt△EGF中,由EG=FG=eq\f(1,2)AC,求得∠FEG=45°,即异面直线EF与BD所成的角为45°.1.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC与BD所成的角的余弦值为()A.eq\f(1,2) B.-eq\f(1,2)C.eq\f(\r(3),2) D.-eq\f(\r(3),2)A[如图所示,分别取AB,AD,BC,BD的中点E,F,G,O,连接EF,FO,OG,GE,GF,则EF∥BD,EG∥AC,FO⊥OG,∴∠FEG或其补角为异面直线AC与BD所成的角.设AB=2a,则EG=EF=eq\r(2)a,FG=eq\r(a2+a2)=eq\r(2)a,∴△EFG是等边三角形,∴∠FEG=60°,∴异面直线AC与BD所成角的余弦值为eq\f(1,2),故选A.]2.(2024·全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线B[如图所示,作EO⊥CD于O,连接ON,过M作MF⊥OD于F.连接BF,∵平面CDE⊥平面ABCD,EO⊥CD,EO平面CDE,∴EO⊥平面ABCD,MF⊥平面ABCD,∴△MFB与△EON均为直角三角形.设正方形边长为2,易知EO=eq\r(3),ON=1,EN=2,MF=eq\f(\r(3),2),BF=eq\f(5,2),∴BM=eq\r(7).∴BM≠EN.连接BD,BE,∵点N是正方形ABCD的中点,∴点N在BD上,且BN=DN.又∵M为ED的中点,∴BM,EN为△DBE的中线,∴BM,EN必相交.故选B.]3.如图,E,F,G,H分别是空间四边形ABCD各边上的点,且AE∶EB=AH∶HD=m,CF∶FB=CG∶GD=n.(1)证明:E,F,G,H四点共面;(2)m,n满意什么条件时,四边形EFGH是平行四边形?(3)在(2)的条件下,若AC⊥BD.试证明:EG=FH.[解](1)证明:因为AE∶EB=AH∶HD,所以EH∥BD.又CF∶FB=CG∶GD,所以FG∥BD.所以EH∥FG.所以E,F,G,H四点共面.(2)当EH∥FG,且EH=FG时,四边形EFGH为平行四边形.因为eq\f(EH,BD)=eq\f(AE,A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论