专题39函数的应用(一)(精讲精析篇)-新高考高中数学核心知识点全透视(原卷版)_第1页
专题39函数的应用(一)(精讲精析篇)-新高考高中数学核心知识点全透视(原卷版)_第2页
专题39函数的应用(一)(精讲精析篇)-新高考高中数学核心知识点全透视(原卷版)_第3页
专题39函数的应用(一)(精讲精析篇)-新高考高中数学核心知识点全透视(原卷版)_第4页
专题39函数的应用(一)(精讲精析篇)-新高考高中数学核心知识点全透视(原卷版)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题3.9函数的应用(一)(精讲精析篇)一、核心素养1.利用给出的具体函数模型解决实际问题,凸显数学运算的核心素养.2.给出具体实际问题,借助所学基本初等函数的特点,建立恰当的函数模型解决实际问题,凸显数学建模、数学运算的核心素养.二、考试要求构建函数模型解决实际问题.三、主干知识梳理1.几类常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)反比例函数模型f(x)=+b(k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)幂函数模型f(x)=axn+b(a,b为常数,a≠0)(较少考查)“对号”函数模型二、真题展示1.(2019·北京高考真题(理))李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.2.(2021·江苏高考真题)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本万元与年产量吨之间的函数关系可以近似地表示为,已知此生产线的年产量最小为60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,可以获得最大利润?并求最大利润.考点01一次函数型【典例1】(2020·云南省高一期末)小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量(百件)与销售单价x(元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.(1)把y表示为x的函数;(2)当销售价为每件50元时,该店正好收支平衡(即利润为零),求该店的职工人数;(3)若该店只有20名职工,问销售单价定为多少元时,该专卖店可获得最大月利润?(注:利润=收入支出)【规律方法】解决函数应用问题重点解决以下几点:(1)阅读理解、整理数据:通过分析快速弄清数据之间的关系,数据的单位等等;(2)建立函数模型:关键是正确选择自变量将问题表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记函数的定义域;(3)求解函数模型:主要是研究函数的单调性,求函数的值域、最大(小)值;(4)回答实际问题结果:将函数问题的结论还原成实际问题,结果明确表述出来.考点02二次函数型【典例2】(2021·新蔡县第一高级中学高一月考)某蛋糕厂生产某种蛋糕的成本为40元/个,出厂价为60元/个,日销售量为1000个,为适应市场需求,计划提高蛋糕档次,适度增加成本.若每个蛋糕成本增加的百分率为x(0<x<1),则每个蛋糕的出厂价相应提高的百分率为0.5x,同时预计日销售量增加的百分率为0.8x,(1)为使日利润有所增加,求x的取值范围;(2)当每个蛋糕成本增加的百分率为多少时,日利润最大,并求出最大日利润.【规律方法】函数模型中,二次函数模型占有重要的地位.根据实际情况,列出函数解析式,可利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解决实际问题中的最大、最小等问题.,考点03“对号”函数型【典例3】(湖北高考真题)围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元).设修建此矩形场地围墙的总费用为y.(Ⅰ)将y表示为x的函数;(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.【典例4】(2021·安徽省亳州市第一中学高三月考(文))2021年某城市一家图书生产企业计划出版一套数学新教辅书,通过市场分析,全年需投入固定成本30万元,印刷(万本),需另投入成本万元,且由市场调研知,每本书售价为60元,且全年内印刷的书当年能全部销售完.(1)求出2021年的利润(万元)关于年产量(万本)的函数关系式;(2)2021年年产量为多少本时,企业所获利润最大?求出最大利润.【规律方法】(1)“对号”型函数模型在实际问题中会经常出现.解决此类问题,关键是利用已知条件,建立函数模型,然后化简整理函数解析式,必要时通过配凑得到“对号”型函数模型.(2)求函数解析式时要先确定函数的定义域.对于类型的函数最值问题,要特别注意定义域和基本不等式中等号成立的条件,如果在定义域内满足“一正、二定、三相等”,可考虑用基本不等式求最值,否则要考虑函数的单调性,此时也可借用导数来研究函数的单调性.考点04分段函数型【典例5】(2020·北京高一期末)下表为北京市居民用水阶梯水价表(单位:元/立方米).阶梯户年用水量(立方米)水价其中自来水费水资源费污水处理费第一阶梯0180(含)5.002.071.571.36第二阶梯181260(含)7.004.07第三阶梯260以上9.006.07(Ⅰ)试写出水费(元)与用水量(立方米)之间的函数关系式;(Ⅱ)若某户居民年交水费1040元,求其中自来水费、水资源费及污水处理费各是多少?【典例6】(2022·上海高三专题练习)某供应商为华为公司提供芯片,由以往的经验表明,不考虑其他因素,该芯片次品率与日产量(万枚)间的关系为:,已知每生产1枚合格芯片供应商可盈利元,每出现1件次品亏损15元.(1)将日盈利额(万元)表示为日常量(万枚)的函数;(2)为使日盈利额最大,日产量应为多少万枚?【总结提升】1.分段函数型问题主要有各段均为一次函数、一二次数混合构成、一二次数与分式函数混合型,处理问题的方法灵活多样,可利用函数的性质(单调性)、利用函数的图象、利用基本不等式等.2.构建分段函数时,要力求准确、简捷,做到分段合理、不重不漏.3.分段函数的最值是各段最大值(或最小值)中的最大者(或最小者).【易错警示】用函数的性质解题时,易忽略函数的定义域及不同单调区间的讨论.巩固提升1.(2020·全国高考真题(理))在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名 B.18名 C.24名 D.32名2.(2020·全国高一专题练习)国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超过800元的14%纳税;超过4000元的按全稿酬的11%纳税.某人出版了一书共纳税420元,这个人的稿费为____元.3.(北京高考真题))顾客请一位工艺师把、两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序时间原料粗加工精加工原料原料则最短交货期为工作日.4.(2020·福建三明一中高一期中)某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入与店面经营天数的关系是,则总利润最大时店面经营天数是__________,最大总利润是__________.5.(2020·北京市鲁迅中学高二月考)现行的个税法修正案规定:个税免征额由原来的2000元提高到3500元,并给出了新的个人所得税税率表:全月应纳税所得额税率不超过1500元的部分3%超过1500元至4500元的部分10%超过4500元至9000元的部分20%超过9000元至35000元的部分25%………例如某人的月工资收入为5000元,那么他应纳个人所得税为:(元).(Ⅰ)若甲的月工资收入为6000元,求甲应纳的个人收的税;(Ⅱ)设乙的月工资收入为元,应纳个人所得税为元,求关于的函数;(Ⅲ)若丙某月应纳的个人所得税为1000元,给出丙的月工资收入.(结论不要求证明)6.(2020·全国高一专题练习)在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营情况良好的某种消费品专卖店以万元的优惠价转让给了尚有万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支元后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价为每件元;②该店月销量(百件)与销售价格(元)的关系如图所示;③每月需各种开支元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?7.(2020·上海高一课时练习)某种商品每件成本80元,每件售价100元,每天售出100件,已知售价降低x成(1成),售出商品的数量就增加成.如果要求该商品的一天营业额至少是10260元,又不能亏本,求x的取值范围.8.(2020·邯郸市永年区第二中学高一期中)投资商到一开发区投资72万元建起一座蔬菜加工厂,经营中,第一年支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元,设fn表示前n年的纯利润总和(fn=前n年总收入前n年的总支出(Ⅰ)该厂从第几年开始盈利?(Ⅱ)该厂第几年平均纯利润达到最大?并求出年平均纯利润的最大值.9.(2020·江西省靖安中学高一月考)甲乙两地相距海里,某货轮匀速行驶从甲地运输货物到乙地,运输成本包括燃料费用和其他费用.已知该货轮每小时的燃料费与其速度的平方成正比,比例系数为,其他费用为每小时元,且该货轮的最大航行速度为海里/小时.()请将该货轮从甲地到乙地的运输成本表示为航行速度(海里/小时)的函数.()要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?10.(2020·进贤县第一中学高一月考(理))机床厂今年年初用98万元购进一台数控机床,并立即投入生产

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论