2022年湖北省广水市城郊街道办事处中学九年级数学第一学期期末质量检测模拟试题含解析_第1页
2022年湖北省广水市城郊街道办事处中学九年级数学第一学期期末质量检测模拟试题含解析_第2页
2022年湖北省广水市城郊街道办事处中学九年级数学第一学期期末质量检测模拟试题含解析_第3页
2022年湖北省广水市城郊街道办事处中学九年级数学第一学期期末质量检测模拟试题含解析_第4页
2022年湖北省广水市城郊街道办事处中学九年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知相似.()A. B. C. D.2.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30° B.15° C.10° D.20°3.若要得到函数的图象,只需将函数的图象()A.先向右平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向上平移2个单位长度C.先向左平移1个单位长度,再向下平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度4.用配方法解一元二次方程x2﹣4x+2=0,下列配方正确的是()A.(x+2)2=2 B.(x﹣2)2=﹣2 C.(x﹣2)2=2 D.(x﹣2)2=65.如图,已知扇形BOD,DE⊥OB于点E,若ED=OE=2,则阴影部分面积为()A. B. C. D.6.下表是二次函数y=ax2+bx+c的部分x,y的对应值:x…﹣1﹣0123…y…2m﹣1﹣﹣2﹣﹣12…可以推断m的值为()A.﹣2 B.0 C. D.27.在平面直角坐标系中,把点绕原点顺时针旋转,所得到的对应点的坐标为()A. B. C. D.8.关于的方程的一个根是,则它的另一个根是()A. B. C. D.9.如图,直线a∥b∥c,直线m、n与这三条平行线分别交于点A、B、C和点D、E、F.若AB=3,BC=5,DF=12,则DE的值为()A. B.4 C. D.10.向阳村年的人均收入为万元,年的人均收入为万元.设年平均增长率为,根据题意,可列出方程为()A. B. C. D.二、填空题(每小题3分,共24分)11.一元二次方程x2﹣16=0的解是_____.12.如图,是⊙O上的点,若,则___________度.13.二次函数图象的开口向__________.14.计算:__________.15.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.16.若,则代数式的值为________________.17.点关于轴的对称点的坐标是__________.18.如果方程x2-4x+3=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tanA的值为_______.三、解答题(共66分)19.(10分)图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?20.(6分)解方程:(1)x2+2x﹣3=0;(2)x(x+1)=2(x+1).21.(6分)某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.22.(8分)已知△ABC在平面直角坐标系中的位置如图所示.请解答:(1)点A、C的坐标分别是、;(2)画出△ABC绕点A按逆时针方向旋转90°后的△AB'C';(3)在(2)的条件下,求点C旋转到点C'所经过的路线长(结果保留π).23.(8分)某土特产专卖店销售甲种干果,其进价为每千克40元,(物价局规定:出售时不得低于进价,又不得高于进价的1.5倍销售).试销后发现:售价x(元/千克)与日销售量y(千克)存在一次函数关系:y=﹣10x+1.若现在以每千克x元销售时,每天销售甲种干果可盈利w元.(盈利=售价﹣进价).(1)w与x的函数关系式(写出x的取值范围);(2)单价为每千克多少元时,日销售利润最高,最高为多少元;(3)专卖店销售甲种干果想要平均每天获利2240元的情况下,为尽可能让利于顾客,赢得市场,则售价应定为每千克多少元.24.(8分)如图1,抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.点D(2,3)在该抛物线上,直线AD与y轴相交于点E,点F是直线AD上方的抛物线上的动点.(1)求该抛物线对应的二次函数关系式;(2)当点F到直线AD距离最大时,求点F的坐标;(3)如图2,点M是抛物线的顶点,点P的坐标为(0,n),点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是AM为边的矩形.①求n的值;②若点T和点Q关于AM所在直线对称,求点T的坐标.25.(10分)(1)解方程组:(2)计算26.(10分)在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色.然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率.

参考答案一、选择题(每小题3分,共30分)1、A【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【详解】解:已知给出的三角形的各边分别为1、、,只有选项A的各边为、2、与它的各边对应成比例.故选:A.【点睛】本题考查三角形相似判定定理以及勾股定理,是基础知识要熟练掌握.2、B【解析】分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.详解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故选B.点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.3、A【分析】找出两抛物线的顶点坐标,由a值不变即可找出结论.【详解】∵抛物线y=(x-1)1+1的顶点坐标为(1,1),抛物线y=x1的顶点坐标为(0,0),∴将抛物线y=x1先向右平移1个单位长度,再向上平移1个单位长度即可得出抛物线y=(x-1)1+1.故选:A.【点睛】本题考查了二次函数图象与几何变换,通过平移顶点找出结论是解题的关键.4、C【分析】按照配方法的步骤:移项,配方(方程两边都加上4),即可得出选项.【详解】解:x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,(x﹣2)2=2,故选:C.【点睛】本题主要考查配方法,掌握完全平方公式是解题的关键.5、B【分析】由题意可得△ODE为等腰直角三角形,可得出扇形圆心角为45°,再根据扇形和三角形的面积公式即可得到结论.【详解】解:∵DE⊥OB,OE=DE=2,

∴△ODE为等腰直角三角形,∴∠O=45°,OD=OE=2.∴S阴影部分=S扇形BOD-S△OED=

故答案为:B.【点睛】本题考查的是扇形面积计算、等腰直角三角形的性质,利用转化法求阴影部分的面积是解题的关键.6、C【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(,﹣)和(,﹣),所以对称轴为x==1,∵,∴点(﹣,m)和(,)关于对称轴对称,∴m=,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.7、C【分析】根据题意得点P点P′关于原点的对称,然后根据关于原点对称的点的坐标特点即可得解.【详解】∵P点坐标为(3,-2),∴P点的原点对称点P′的坐标为(-3,2).故选C.【点睛】本题主要考查坐标与图形变化-旋转,解此题的关键在于熟练掌握其知识点.8、C【分析】根据根与系数的关系即可求出答案.【详解】由根与系数的关系可知:x1x2=−3,∴x2=−1,故选:C.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.9、C【分析】由,利用平行线分线段成比例可得DE与EF之比,再根据DF=12,可得答案.【详解】,,,,,,故选C.【点睛】本题考查了平行线分线段成比例,牢记平行线分线段成比例定理及推论是解题的关键.10、A【分析】设年平均增长率为,根据:2017年的人均收入×1+增长率=年的人均收入,列出方程即可.【详解】设设年平均增长率为,根据题意,得:,故选:A.【点睛】本题主要考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.二、填空题(每小题3分,共24分)11、x1=﹣1,x2=1【分析】直接运用直接开平方法进行求解即可.【详解】解:方程变形得:x2=16,开方得:x=±1,解得:x1=﹣1,x2=1.故答案为:x1=﹣1,x2=1【点睛】本题考查了一元二次方程的解法,掌握直接开平方法是解答本题的关键.12、130°.【分析】在优弧AB上取点D,连接AD,BD,根据圆周角定理先求出∠ADB的度数,再利用圆内接四边形对角互补进行求解即可.【详解】在优弧AB上取点D,连接AD,BD,∵∠AOB=100°,∴∠ADB=∠AOB=50°,∴∠ACB=180°﹣∠ADB=130°.故答案为130°.【点睛】本题考查了圆周角定理,圆内接四边形对角互补的性质,正确添加辅助线,熟练应用相关知识是解题的关键.13、下【分析】根据二次函数的二次项系数即可判断抛物线的开口方向.【详解】解:∵,二次项系数a=-6,∴抛物线开口向下,故答案为:下.【点睛】本题考查二次函数的性质.对于二次函数y=ax2+bx+c(a≠0),当a>0时,抛物线开口向上,当a<0时,抛物线开口向下.14、【分析】先计算根号、负指数和sin30°,再运用实数的加减法运算法则计算即可得出答案.【详解】原式=,故答案为.【点睛】本题考查的是实数的运算,中考必考题型,需要熟练掌握实数的运算法则.15、60°.【分析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【详解】∵△ABC中,∠A、∠B都是锐角,sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.16、2019【分析】所求的式子前三项分解因式,再把已知的式子整体代入计算即可.【详解】解:∵,∴.故答案为:2019.【点睛】本题考查了代数式求值、分解因式和整体的数学思想,属于常见题型,灵活应用整体的思想是解题关键.17、【分析】根据对称点的特征即可得出答案.【详解】点关于轴的对称点的坐标是,故答案为.【点睛】本题考查的是点的对称,比较简单,需要熟练掌握相关基础知识.18、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,①当3是直角边时,∵△ABC最小的角为A,∴tanA=;②当3是斜边时,根据勾股定理,∠A的邻边=,∴tanA=;所以tanA的值为或.三、解答题(共66分)19、【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再根据通过把y=-1代入抛物线解析式得出水面宽度,即可得出答案.【详解】解:建立平面直角坐标系.设二次函数的解析式为(a≠0).∵图象经过点(2,-2),∴-2=4a,解得:.∴.当y=-3时,.答:当水面高度下降1米时,水面宽度为米.【点睛】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,难度一般.20、(1)x1=-3,x2=1;(2)x1=-1,x2=2【分析】(1)利用“十字相乘法”对等式的左边进行因式分解;又可以利用公式法解方程;(2)利用因式分解法解方程.【详解】(1)解一:(x+3)(x﹣1)=0解得:x1=﹣3,x2=1解二:a=1,b=2,c=﹣3x=解得:x=即x1=﹣3,x2=1.(2)x(x+1)﹣2(x+1)=0(x+1)(x﹣2)=0x1=﹣1,x2=2点睛:本题主要考查了因式分解法和公式法解一元二次方程的知识,解题的关键是掌握因式分解法解方程的步骤以及熟记求根公式.21、(1);(2).【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=,故答案为:;(2)解:列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22、(1)(1,4);(5,2);(2)作图见解析;(3).【分析】(1)根据图可得,点A坐标为(1,4);点C坐标为(5,2);(2)画出△ABC绕点A按逆时针方向旋转90°后的△AB′C′;(3)在(2)的条件下,先求出AC的长,再求点C旋转到点C′所经过的路线长即可;【详解】解:(1)点A坐标为(1,4);点C坐标为(5,2).故答案为:(1,4);(5,2);(2)如图所示,△AB'C'即为所求;(3)∵点A坐标为(1,4);点C坐标为(5,2),∴,∴点C旋转到C′所经过的路线长;【点睛】本题主要考查了作图-旋转变换,轨迹,掌握作图-旋转变换是解题的关键.23、(1)w=﹣10x2+1100x﹣28000,(40≤x≤60);(2)单价为每千克55元时,日销售利润最高,最高为2250元;(3)售价应定为每千克54元.【分析】(1)根据盈利=每千克利润×销量,列函数关系式即可;(2)根据二次函数的性质即可得到结论;(3)根据每天获利2240元列出方程,然后取较小值即可.【详解】解:(1)根据题意得,w=(x﹣40)•y=(x﹣40)•(﹣10x+1)=﹣10x2+1100x﹣28000,(40≤x≤60);(2)由(1)可知w=﹣10x2+1100x﹣28000,配方得:w=﹣10(x﹣55)2+2250,∴单价为每千克55元时,日销售利润最高,最高为2250元;(3)由(1)可知w=﹣10x2+1100x﹣28000,∴2240=﹣10x2+1100x﹣28000,解得:x1=54,x2=56,由题意可知x2=56(舍去),∴x=54,答:售价应定为每千克54元.【点睛】此题主要考查了二次函数的应用以及一元二次方程的应用,正确得出w与x之间的关系是解题关键.24、(1)y=-x2+2x+3;(2)F(,);(3)n=,T(0,-)或n=-,T(0,).【分析】(1)用待定系数法求解即可;(2)作FH⊥AD,过点F作FM⊥x轴,交AD与M,易知当S△FAD最大时,点F到直线AD距离FH最大,求出直线AD的解析式,设F(t,-t2+2t+3),M(t,t+1),表示出△FAD的面积,然后利用二次函数的性质求解即可;(3)分AP为对角线和AM为对角线两种情况求解即可.【详解】解:(1)∵抛物线x轴相交于点A(-1,0),B(3,0),∴设该抛物线对应的二次函数关系式为y=a(x+1)(x-3),∵点D(2,3)在抛物线上,∴3=a×(2+1)×(2-3),∴3=-3a,∴a=-1,∴y=-(x+1)(x-3),即y=-x2+2x+3;(2)如图1,作FH⊥AD,过点F作FM⊥x轴,交AD与M,易知当S△FAD最大时,点F到直线AD距离FH最大,设直线AD为y=kx+b,∵A(-1,0),D(2,3),∴,∴,∴直线AD为y=x+1.设点F的横坐标为t,则F(t,-t2+2t+3),M(t,t+1),∵S△FAD=S△AMF+S△DMF=MF(Dx-Ax)=×3(-t2+2t+3-t-1)=×3(-t2+t+2)=-(t-)2+,∴即当t=时,S△FAD最大,∵当x=时,y=-()2+2×+3=,∴F(,);(3)∵y=-x2+2x+3=-(x-1)2+4,∴顶点M(1,4).当AP为对角线时,如图2,设抛物线对称轴交x轴于点R,作PS⊥MR,∵∠PMS+∠AMR=90°,∠MAR+∠AMR=90°,∴∠PMA=∠MAR,∵∠PSM=∠ARM=90°,∴△PMS∽△MAR,∴,∴,∴MS=,∴OP=RS=4+=,∴n=;延长QA交y轴于T,∵PM∥AQ,∴∠MPO=∠OAM,∵∠MPS+∠MPO=90°,∠OAT+∠OAM=90°,∴∠MPS

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论