版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023.2024学年八年级数学上册举一反三系列专题15.6分式方程的解
法专项训练(50道)
【人教版】
考卷信息:
本套训练卷共50题,题型针对性较高,覆盖面广,选题有深度,涵盖了分式方程的解法的所有类型!
一.解答题(共50小题)
1.(2022•甘肃•兰州市第五十四中学八年级期末)解下列分式方程:
;
(\1)'—x-2+2=-2-x
(2后~白
x+2
2.(2022•吉林•长春市第八十七中学八年级阶段练习)解分式方程:
⑴
(2)3-£=公
3.(2022•湖南•岳阳市第十九中学八年级阶段练习)解分式方程:
X-1
3
⑴Ex-2
⑵土岛
4.(2022•山东・周村二中八年级阶段练习)解方程:
⑴丘1二六;
5.(2022・贵州•测试•编辑教研五八年级阶段练习)解分式方程:
।2*_I+].
(1)才+3-X+3'
⑵六一岛=。.
6.(2022・山东・济南锦苑学校八纪级期中)解分式方程:
⑴五=有;
⑵*2*
7.(2022・河南•桐柏县思源实验学校八年级阶段练习)解下列分式方程
⑴MY
⑵打斗2
2X-X2
8.(2022・陕西•西大附中济濡中学八年级阶段练习)解分式方程回
/-»2-X10
(\1)'x—-3=-3---x----2
(2)1-去缶
9.(2022•湖南•长沙市岳麓区博才培圣学校八年级阶段练习)解分式方程:
...2x1T
⑴东工+11;
⑵/一=1.
X2-4
10.(2022•江苏•苏州市相城区阳澄湖中学九年级阶段练习)解分式方程:
⑴口=有
E11-X
(2)口二~3Q
11.(2022•江苏•南京市六合区励志学校八年级阶段练习)解下列分式方程
⑴*=士
⑵亲.含=1
12.(2022・河北•南皮县桂和中学八年级阶段练习)解下列分式方程:
(2岛=1+券
13.(2022・四川・米易县民族中学校八年级阶段练习)解下列分式方程:
⑴于W
(2)自+1=左7
14.(2022•山西•右玉县第三中学校八年级期末)解分式方程:
小2x+94X-7
(1)-----=-------F2;
''3X-9X-3
⑵今+40X+2
4-X2X-Z
15.(2022•新疆・乌鲁木齐市第136中学八年级期末)解分式方程:
⑴自一1=W
⑵三+2=占
16.(2022心•肃•民勤县第六中学八年级期末)解分式方程:
2
'(1)'—x-2=-2---x----
⑵口…X2-4
17.(2022•江苏•扬州市江都区第三中学八年级阶段练习)解分式方程:
⑴*=看
化2+2=三.
18.(2022•山东烟台•八年级期中)解分式方程:
⑴言=2-战
(2七_[=^7?
19.(2022•山东枣庄•八年级阶段练习)解分式方程:
⑴工+1F
⑵乎士
20.(2022•河南新乡•八年级阶段练习)解分式方程
⑴盘+舟=1
⑵言+;忌
(2。22•内蒙古・乌拉特前旗第三中学八年级期末)解分式方程.:六+±=7
X2-!
22.(2。22・福建师范大学附属中学初中部八年级期末)解分式方科£+分=L
23.(2。22・宁夏・灵武市第二中学八年级期末)解分式方程自=*
6
24.(2022•陕西•西安市五环中学八年级期末)解分式方程:—1=——lr
X2-4x+2
25.(2。22・四川成都•八年级期末)解分式方程:怎-松=2.
26.(2。22・陕西紫阳县师训教研中心八年级期末)解分式方程靠=京+1.
27.(2。22・浙江丽水•三模)解分式方程:・W+2.
28.(2022•陕西省西安爱知中学九年级开学考试)解分式方程:
29.(2。22・广东・深圳市福景外国语学校八年级阶段练习)解分式方程:
30.(2022•云南省个旧巾第二中学八年级期中)解下列分式方程
⑵芸+16
X2-4=-1.
31.(2。22•山东•单县湖西学校八年级阶段练习)解分式方程:三二七-2
32.(2022•江苏•九年级开学考试)解分式方程:
⑴日+怎=%
⑵仁-念
33.(2022・河南•辉县市冠英学校八年级期中)解方程.
(1)——-——=1;
''x+2(x-l)(x+2)
7-9x
(2):
2+善I”
34.(2。22.湖南.慈利县教育科学研究室八年级期中)解分式方程:沼=1-总
35.(2022・湖南・永州市剑桥学校八年级阶段练习)解分式方程
⑴*=2+£
4
⑵言一=1
X2-1
36.(2022•山东•招远市教学研究室八年级期中)解分式方程
(1)^____=上
''x-3x+3X2-9
(2)W-3=E
37.(2022・湖南•宁远县仁和镇中学八年级阶段练习)解下列分式方程:
⑴m氏=i;
38.(2022•河南•郑州经开区外国语女子中学八年级期末)解分式方程:^-+1=—^―.
39.(2022•湖南•八年级阶段练习)解分式方程:
(2七一]=百后否
40.(2022•陕西省西安爱知中学八年级期末)解分式方程:
/、42X+6
⑴工=
41.(2022•江苏•泰兴市济川初级中学八年级阶段练习)解分式方程:
42.(2022•新疆•和硕县第二中学八年级期末)解分式方程:三二三
XX+1
43.(2022•广西贺州•七年级期末)解分式方程:一三二岁
x-22-x
44.(2022•广西贺州•七年级期末)解分式方程:
()
'1'—x-2=—x+1
(2)--1=—
''才-2Xz-4x+4
45.(2022・安徽六安•七年级期末)解分式方程:芸-1=松
46.(2022•湖南常德•八年级阶段练习)解分式方程:—-^-=1.
xx-2
47.(2022•河南三门峡•八年级期末)解分式方程:
(1)—=—
''3+x3-x
仅%-1)3+2)+1-立
48.(2022・全国•八年级专题练习)解下列分式方程:
亦23x+3
(2)------------=——.
'々-1x+1x2-l
x+3
49.(2。22・陕西・紫阳县师训教研中心八年级期末)解分式方程:£+=1.
X2-2X
50.(2022•云南保山•八年级期末)解下列分式方程:
⑴全=5
⑵右一盘=1
专题15.6分式方程的解法专项训练(50道)
【人教版】
考卷信息:
本套训练卷共50题,题型针对性较高,覆盖面广,选题有深度:涵盖了分式方程的解法的所有类型!
一.解答题(共50小题)
1.(2022•甘肃・兰州市第五十四中学八年级期末)解下列分式方程:
⑴口+2工;
'(23)--^-4------X--2X+2.
【答案】(1)无解
⑵E
【分析】(1)方程两边都乘。-2)得出1一%+2(%-2)=-1,求出方程的解,再进行检验即可;
(2)方程两边都乘(X+2)(%-2)得出%-(%+2)=2(无一2),求出方程的解,再进行检验即可.
(1)
解:方程两边都乘(%-2)得,
1~-x+2(%-2)=-1»
解得x=2,
检验:当x=2时,x-2=0,
盟=2是增根,原方程无解;
(2)
解:方程两边都乘(%+2)(%-2)得,
x-(x+2)=2(x-2),
解得%=1,
检验:当x=l时,(%+2)(%-2)工0,
以=1是原方程的解.
【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键,特别注意解分式方程需
要验根.
2.(2022,吉林•长春市第八十七中学八年级阶段练习)解分式方程
⑴t
仲-六=公
【答案】(1)%=4
(2)无解
【分析】(1)首先把分式方程两边乘Mx-1)化为整式方程,解出整式方程的解,然后再进行检验,把整
式方程的解代人最简公分母式工-1),得出最简公分母式工-1)不为0,即可得出原分式方程的解;
(2)首先把分式方程两边乘(无-2)化为整式方程,解出整式方程的解,然后再进行检验,把整式方程的解
代人最简公分母(%-2),得出最简公分母(工-2)为0,即可得出原分式方程无解.
(1)
解:告=士
X-1X
方程两边乘1),得:3x=4x—4,
解得:x=4,
检验,当%=4时・,x(x-l)^0,
回原分式方程的解为x=4;
(2)
解:3-£=E
方程两边乘(%—2),得:3(x—2)—1=1—x»
解得:x=2,
检验,当%=2时,x-2=0,因此%=2不是原分式方程的解,
(3原分式方程无解.
【点睛】本题考查了解分式方程,解本题的关键在注意检验.
3.(2022•湖南•岳阳市第十九中学八年级阶段练习)解分式方程:
⑴展告3
⑵牙白
【答案】(1)无解
(2—7
【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到工的值,经检验即可得到分式方程
的解;
(2)将分式方程化成整式方程,求解后,需要检验根.
(1)
解:去分母得:1=%-1-3%+6,
移项合并得:2x=4,
解得:%=2,
经检验乃=2是增根,分式方程无解.
(2)
4x—2=3x-9
x=-7,
检验:当%=—7时,(%-3)(2%-1)^0,
7是原方程的根;
【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
4.(2022•山东・周村二中八年级阶段练习)解方程:
【答案】(1)原分式方程无解;
(2)x=-;.
【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到X的值,经检验即可得到分式方程
的解;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】(1)去分母得:一/+1=1,
整理,得/一%+1=0,
0Z)2-4ac=1-4=-3<0,
回此方程无解,
则原分式方程无解;
(2)去分母得:4x不卜2=-3,
解得:x=-|,
检验:把%=代入得:2H0,
团分式方程的解为x=-:.
«5
【点睛]此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
5.(2022•贵州•测试•编辑教研五八年级阶段练习)解分式方程:
【答案】(1比=4
(2)无解
【分析】(1)先去分母,把分式方程化为整式方程,再解出整式方程,然后检验,即可求解;
(2)先去分母,把分式方程化为整式方程,再解出整式方程,然后检验,即可求解.
(1)
解:三=吃+1
x+3x+3
去分母得:2%=1+X+3,
解得:x=4,
当x=4时,x4-3#:0,
所以原方程的解为%=4;
(2)
--------^-=0,
X-1X2-1
去分母得:x+l-2=o,
解得:X=1,
当x=1时,x2-1=0,
所以%=1是增根,
所以原方程无解.
【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的基本步骤,并注意检验是解题的关键.
6.(2022・山东・济南锦苑学校八生级期中)解分式方程:
⑴9a
【答案】(l)X=1
(2)x=4
【分析】(1)先把分式方程化为整式方程求解,然后检验即可;
(2)先把分式方程化为整式方程求解,然后检验即可.
(1)
解:如击
方程两边同时乘以2x(%+3)得:x4-3=4x,
解得:%=1.
经检验,x=l是原方程的根,
回原方程的解为%=1;
(2)
解:
方程两边同时乘以(3-2)得:x-l-2(x-2)=-1,
去括号得:%-1-2%+4=-1
解得%=4
经检验,工=4是原方程的根,
团原方程的解为%=4.
【点睛】本题主要考查了解分式方程,熟知解分式方程的方法是解题的关键,注意分式方程最后一定要检
验.
7.(2022・河南•桐柏县思源实验学校八年级阶段练习)解下列分式方程
11
⑴三一1工
⑵春
【答案】⑴%=-4
⑵原方程无解
【分析】(1)先将分式;方程变为整式方程,然后再解整式方程得出未知数的值,最后将方程的解进行检验
即可;
(2)先去分母将分式方程变为整式方程,然后再解整式方程得出未知数的值,最后将方程的解进行检验即
可.
(1)
解:夸T=S
方程两边同乘(之一3)得:Zx-(x-3)=-l,
去括号得:2x-x+3=-l,
移项合并同类项得:x=-4,
检验:将x=-4代入%-3得:-4-3=-7工0,
回%=-4是原方程的解;
(2)
方程两边同乘x(x-2)得:x-24-3x=-2,
移项合并同类项得:4x=0,
解得:x=0,
把x=0代入-2)得:0(0-2)=0,
0x=0是原方程的增根,
回原方程无解.
【点睛】本题主要考查了解分式方程,解题的关键是熟练掌握解分式方程的•般步骤,注意解分式方程,
要进行检验.
8.(2022・陕西•西大附中济濡中学八年级阶段练习)解分式方程团
2T1O
⑴三工一2
(2)1
''2x+2X+1
【答案】(1)原方程无解
(2)x=1
【分析】(1)先去分母,然后再进行求解方程即可;
(2)先去分母,然后再求解方程即可.
(1)
解:芸=£-2
去分母得:2-x=-1-2(x-3)
去括号得:2-%=-1-2%+6
移项、合并同类项得:x=3;
经检验:当%=3时,x-3=0,是增根,舍去,
团原方程无解;
(2)
解「一篇T
去分母得:2%+2—(x—3)=6%
去括号得:2x+2—x+3=6x
移项、合并同类项得:-5%=-5;
系数化为1得:x=l
经检验:当x=l时,2x+2H0,
=1.
【点睛】本题主要考查分式方程的解法,熟练掌握解分式方程的步骤是解题的关键.
9.(2022•湖南•长沙市岳麓区博才培圣学校八年级阶段练习)解分式方程:
..2x1,.
(1)x——=-----b1;
''x+3x+3
⑵£一悬=1・
【答案】(l)x=4
(2)x=5
【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程
的解;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
(1)
解:去分母得:2x=l+x+3,
解得:x=4,
检验:把x=4代入得:X+3H0,
团分式方程的解为K=4;
(2)
解:去分母得:%(%+2)-14=炉一%
解得:x=5,
检验:把x=5代入得:(%+2)5-2)M,
团分式方程的解为4=5.
【点睛】此题考查了解分式方程,关键是利用了转化的思想,把分式方程化为整式方程,解分式方程注意
要检验.
10.(2022•江苏•苏州市相城区阳澄湖中学九年级阶段练习)解分式方程:
(喂=W
⑵4芸-3
【答案】(1比=?
4
⑵原方程无解
【分析】(1)先把分式方程化为整式方程求解,然后检验即可:
(2)先把分式方程化为整式方程求解,然后检验即可.
(1)
解:£二人
去分母得:2-x=3(%-3),
去括号得:2-x=3%-9,
移顶得:—%—3x=-9—2,
合并得:-4%=-11,
系数化为1得:%=?,
4
经检验》=?是原方程的解,
4
(3原方程的解为x=?;
4
(2)
解:解:S=三一3
去分母得:1=一(1一%)-3(%-2),
去括号得:1=-1+%-3%+6,
移项得:—%+3x=—1+6—1,
合并得:2x=4,
系数化为1得:x=2,
经检验%=2时,x—2=0,
团原方程的无解.
【点睛】本题主要考查了解分式方程,熟知解分式方程的方法是解题的关键,注意分式方程最后要检验.
11.(2022•江苏•南京市六合区励志学校八年级阶段练习)解下列分式方程
(1)—=—;
x'x-22-x
【答案】(1)无实数解
(2)>=-1
【分析】(1)移项,合并,再根据分式方程有意义的条件即可判断;
(2)将方程的左边通分,再将两边同时乘以(/-4),去括号合并,系数化为1,再对方程的根进行检验即
可.
(1)
11
------------------=0
X—22—x
—=0,
X-2
X。0,
X-2
回原分式方程无实数解,
即分式方程无实数解;
(2)
(%-2)212
%2—4%2—4
%2-4x+4-12=X2-4
x=-1,
经检验,%=-1是原方程的解,
即原分式方程的解为:x=-l
【点睛】本题主要考查了解分式方程,还考查了根据分式方程有意义的条件判断其解的情况.解分式方程
注意最后需要对所得的解进行检验.
12.(2022•河北•南皮县桂和中学八年级阶段练习)解F列分式方程:
【答案】⑴无二3
⑵父=1
【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到工的值,经检验即可得到分式方程
的解;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到了的值,经检验即可得到分式方程的解.
(1)
解:去分母得:%-1=2x-2(%-1),
去括号得:%-1=2%-2%+2,
解得:x=3,
检验:把%=3代入得:2%(%-1)=0,
•••分式方程的解为%=3:
(2)
去分母得:x(x-3)=x2—9+6,
解得:%=1,
检验:把%=1代入得:0+3)(%-3)工0,
•••分式方程的解为x=l.
【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
13.(2022•四川•米易县民族中学校八年级阶段练习)解下列分式方程:
⑴*£
呜+1=言
【答案】(1)分式方程无解
【分析】(1)两分式方程去分母转化为整式方程,求出整式方程的解得到工的值,经检验即可得到分式方
程的解:
(2)两分式方程去分母转化为整式方程,求出整式方程的解得到"的值,经检验即可得到分式方程的解.
(1)
解』专
去分母得:x-1=1,
解得:x=2,
经检验%=2是增根,分式方程无解;
(2)
解:凸+1=
X2-1
去分母得:3(%4-1)+x2—1=%2,
去括号得:3X+3+X2-1=X2,
移项合并得:3x=-2,
解得:x=-
经检验无是分式方程的解.
【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想〃,把分式方程转化为整式方程求解.解
分式方程•定注意要验根.
14.(2022•山西•右玉县第三中学校八年级期末)解分式方程:
⑴言=失+2;
(2产+工=上
'3+24-X2X-2
【答案】(1)原分式方程无解
⑵无=-5
【分析】(1)先将分式方程化为整式方程,再进行求解,最后进行验算即可;
(2)根据平方差公式将分式方程化为整式方程,再用完全平方公式进行计算求值,最后检验即可.
(1)
hj)2x+94x—7o
解::3X一-9;=—X-32,
2x+9_12x-21
3x-9-3x-9+2,
2x+9=12x-21+6%—18,
-16%=-48,
x=3.
又啜搂=窸+2中x—3H。,
耽。3,
经检验原方程无解.
(2)
nX-2,40X+2
解&:-~2=-;,
x+24-x2x-2
(义―2)(2_幻40__(x+2)(2+¥)
(2-x)(x+2)+4一,=~(2-x)(2+x)t
(x-2)2,40(x+2)2
-----4--T---2--+4---r---2--=----4--r---2---9
-(x-2)2+40=-(x+2)2,
x-4x+4-x-4x-4=40,
-8r=40,
.r=-5»
检验:当.r=-S时,x2-4st0.
团原分式方程的解为x=-5.
【点睛】本题考查r分式方程的求解,解决本题的关键是熟练的应用完全平方公式和平方差公式进行化简
即可.
15.(2022•新疆•乌鲁木齐市第136中学八年级期末)解分式方程:
⑴L=W
⑵碧+2=占
【答案】(l)x=2
(2)无解
【分析】(1)先去分母,然后可进行求解方程;
(2)先去分母,然后再进行求解方程即可.
(1)
解:去分母得:x(x+1)-(x4-l)(x-1)=3(x-1),
去括号得:%2+%—x2+1=3x-3,
移项、合并同类项得:-2x=-4,
解得:x=2,
经检验:当x=2时,(%+1)(%—1)工0,
团原方程的解为%=2;
(2)
解:去分母得:1一%+2(%-2)=-1,
去括号得:1一%+2%-4=-1
移项、合并同类项得:x=2,
经检验:当%=2时,x—2=0,
囹原方程无解.
【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键.
16.(2022♦甘肃•民勤县第六中学八年级期末)解分式方程:
⑴。工_2
⑵专-八人
【答案】(1)无解
(2)x=-
【分析】(1)先把分式方程化为整式方程求解,然后检验即可:
(2)先把分式方程化为整式方程求解,然后检验即可.
(1)
解:3=£-2
方程两边同时乘以(x-2)得:1一x=-1一2(%-2),
去括号得:1一%=-1-2%+4,
移项得:—x+2x=-1+4—1,
合并得:x=2,
经检验%=2时分母为0,
团原方程无解
(2)
解:三一1=岛
方程两边同时乘以(%-2)(x+2)得:x(x+2)-(X2-4)=3,
去括号得:x2+2x-x2+4=3,
移项得:2x=3-4,
合并得:2x=-1,
系数化为1得:x=-^
经检验无是原方程的解,
回原方程的解为x=
【点睛】本题主要考查了解分式方程,熟知解分式方程的方法是解题的关键,注意分式方程要检验.
17.(2022♦江苏•扬州市江都区第三中学八年级阶段练习)解分式方程:
21
⑴三二二T
呜+2=公
【答案】(1)%=・4;
(2)无解.
【分析】(1)方程两边都乘(x+l)(x-2)得出整式方程,求出整式方程的解,再进行检验即可:
(2)方程两边都乘6-4)得出整式方程,求出整式方程的解,再进行检验即可.
(1)
解:方程两边都乘a+l)(x-2),
得出2(x+1)=x-2,
解得:x=-4,
检验:当x=-4时,(x+1)(x-2)*0,
所以x=-4是原方程的解,
即原方程的解是x=-4:
(2)
解:方程两边都乘(%-4),
得出-3+2(A-4)=l-x,
解得:x=4,
检验:当x=4时,x-4=0,
所以x=4是原方程的增根,
即原方程无解.
【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.
18.(2022•山东烟台•八年级期中)解分式方程:
⑴穿二2一人
⑵£_]二』■
【答案】⑴无解
(2)x=4
【分析】(1)去分母将分式方程转化为整式方程,求出整式方程的解,然后检验即可;
(2)去分母将分式方程转化为整式方程,求出整式方程的解,然后检验即可.
(1)
解.2“-2_2___?_
脐,2x-33-2x
两边同时乘以2%-3,得:
2x-2=2(2x-3)+1,
3
-X=2,
检验:当%=弓时,原方程中分式的分母的值为0,
所以%是原方程的增根,应舍去,
.••原方程无解.
(2)
解:£4
X2-4X+4
方程两边乘(%-2)2得:x(x-2)-(x-2)2=4,
解得:x=4,
检验:当x=4时,(%—2)2。0,
二.原方程的解为x=4.
【点睛】本题考查了解分式方程,正确掌握解方程的步骤及解法是解题的关键.
19.(2022•山东枣庄•八年级阶段练习)解分式方程:
⑴V+1=会;
x-lX-1
(2)--------=1.
、,XX-2
【答案】⑴户1.5
(2)J=0.8
【分析】(1)两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方
程的解;
(2)同(1)中方法求解即可.
(1)
解:(1)去分母得:1=2,
解得:x=1.5,
检验:把x=1.5代入得:X-100,
回分式方程的解为x=L5;
(2)
去分母得:(x-2)2-3x=x(x-2),
整理得:x2-4.V+4-3x=x2-2x,
解得:、=0.2.
检验:把x=0.8代入得:x(x-2)。0,
团分式方程的解为"=0.8.
【点睛】此题考查了解分式方程,利用了转化的思想,把分式方程转化为整式方程,解分式方程注意要检
验.
20.(2022•河南新乡•八年级阶段练习)解分式方程
【答案】⑴工=0
(2)无解
【分析】(1)先去分母,把分式方程化为整式方程,解出整式方程,再检验,即可求解;
(2)先去分母,把分式方程化为整式方程,解山整式方程,再险验,即可求解.
(1)解:三+去=1去分母得:x-5=2x-5,解得:x=0,检验:当%=0时,2%-5工0,所以
2x-55-2x
原方程的解为%=0;
(2)解:=+三=■去分母得:6%+3(%—1)=x+5,解得:x=1.检验:当%=1时,x12*4—x=0,
%—1XX
所以%=1是增根,即原方程无解.
【点睛】本题主要考查了解分式方程,熟练掌握分式方程的解法,并注意要检验是解题的关键.
21.(2022•内蒙古・乌拉特前旗第三中学八年级期末)解分式方程:三+告=告
x-1x+1x2-l
【答案】x=2
【分析】方程去分母,去括号,移项,合并同类项,系数化为1,即可求出解.
【详解】二+△
x-lx+1x2-l
解:同时乘以(%2—1)得:—X(X2—1)+—X(%2—1)=-^―X(%2—1)
X""1XH"1X^"1
去分母得:2(x+l)+x-l=7
去括号得:2x+2+x-l=7
移项得:3x=6
系数化为1得:x=2
检验:当%=2时,(x2-1)=(22-1)0
0x=2是原方程的解
回分式方程的解为%=2.
【点睛】本题考查解分式方程,找最小公分母,检验是解题的关键.
22.(2022・福建师范大学附属中学初中部八年级期末)解分式方程:1+鲁=1.
72X-T42-X
【答案】"9
4
【分析】方程两边都乘2a-2)得出1-2。+1)=2(%-2),求出方程的解,再进行检验即可.
1X+lT
---------=1,
2(X-2)X-2
方程两边都乘2Q-2),得1—20+1)=2(%-2),
解得:%=:,
4
检验:当%时,2(无一2)HO,
取二;是原方程的解,
即原方程的解是%="
4
【点睛】本题主要考查的是分式方程的解法,需要注意的是,分式方程一定要检验.
23.(2022.宁夏・灵武市第二中学八年级期末)解分式方程三=瞑.
【答案】x=5
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到工的值,经检验即可得到分式方程的解.
【详解】解:方程两边同时乘(%-3)(x-2),
得:3(%-3)=2(%—2)
化简,得%-5=0
解得:x=5
检验:当%=5时,(%-3)(%—2)工0,
=5是分式方程的解.
【点睛】本题考查了分式方程的解法,解题的关键是把分式方程转化为整式方程求解及解分式方程一定要
注意验根.
24.(2022•陕西•西安市五环中学八年级期末)解分式方程:裳一1二m.
【答案】x=4
【分析】分式方程两边乘以2)(%+2),去分母转化为整式方程,求出整式方程的解得到k的值,经检
验即可得到分式方程的解.
6—(x2—4)=—(X—l)(x—2),
6-x2+4=-x2+3%-2,
解得%=4,
当%=4时,(%—2)(%+2)H0,
•••%=4是原方程的解.
【点睛】本题考查了解分式方程,正确的计算是解题的关键.
25.(2022•四川成都•八年级期末)解分式方程:/一渭:=2.
1-ZXZX-1
【答案】无解
【分析】先去分母,把分式方程亿为整式方程,进而即可求解.
【详解】解:32X-4.
1-2X-2-X-1-=2,
去分母得:3+2x-4=2(l-2^),
化简得6%=3,
解得%=p
经校验:是方程的增根,
回原方程无解.
【点睛】本题主要考查解分式方程,通过去分母把分式方程化为整式方程,是解题的关键.
26.(2022・陕西紫阳县师训教研中心八年级期末)解分式方程:三二々+1.
X+3X+3
【答案】x=4
【分析】先去分母,把分式方程亿成整式方程,然后解整式方程,最后进行检验.
【洋解】去分母,得:2x=l+x+3
解得:x=4.
检验:把工=4代入x+3得%+3*0,
团原分式方程的解是%=4.
【点睛】本题主要考查了解分式方程.注意:解分式方程必须遂行检验.通常情况卜把整式方程的解代入
最简公分母中,若最简公分母的值不为0,则整式方程的解就是分式方程的解:若最简公分母的值为0,
则整式方程的解就是分式方程的增根,则分式方程无解.掌握以上知识是解题的关键.
27.(2022•浙江丽水•三模)解分式方程:-^-=-+2.
X+1X
【答案】%=一3
【分析】左右两边同时乘以工。+1),化为一元一次方程,解这个方程并验根即可.
【详解】解:两边同时乘以%(%+1)得:2x2=(x+1)+2x(x4-1),
化简得:3%+1=0,
解得:x=
经检验,%=-:是原方程得解.
【点睛】本题考查分式方程的解法,掌握解分式方程的一般步骤是解题的关键.特别注意分式方程都要检
验.
28.(2022•陕西省西安爱知中学九年级开学考试)解分式方程:岩=1-土
【答案】x=l
【分析】方程两边同时乘以工(%-2),化为整式方程,解方程即可求解,最后要检验.
【详解】解:方程两边同时乘以式%-2),得,
x(x-l)=x(x-2)—(x—2),
X2-X=X2-2X-X+2,
2x=2,
解得%=1,
检验:当%=1时,x(x-2)=-1^0.
取二1是原方程的解.
【点睛】本题考查了解分式方程,正确的计算是解题的关键.
29.(2022•广东・深圳市福景外国语学校八年级阶段练习)解分式方程:-^--1=-.
x-2x
【答案】工二一2
【分析】方程两边同时乘以工(%-2),化为整式方程,进而解方程即可求解,注意最后要检验.
2
【详解】解:去分母得:x-x(X-2)=x-2,
整理得:%2-%24-2x=x-2,
解得:x=-2,
经检验,*=-2是原方程的解,
则原方程的解是%=-2.
【点睛】本题考查了解分式方程,正确的计算是解题的关键.
30.(2022•云南省个旧市第一中学八年级期中)解下列分式方程
【答案】(l)x=2
⑵无解
【分析】先去分母,把分式方程化为整式方程,再解出整式方程,然后检验,即可求解.
(1)
解:?=告
xx+1
方程两边乘x(x+l),得2(X+1)=3厂
解得x=2.
检验:当x=2时,X(X+1)=6H0,
团原分式力程的解为K=2.
(2)
解:产+
X2-4
原方程可化为当一生三二1,
方程两边乘(x+2)(x—2),得
(x+2)2—16=(x+2)(x—2).
解得x=2.
检验:当x=2时,口+2心—2)=0,
因此x=2是增根.
回原分式方程无解.
【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的基本步骤,并注意解分式方程时一定要检验
是解题的关键.
31.(2022•山东•单县湖西学校八年级阶段练习)解分式方程:三二J工-2
7
【答案】X=-
6
【分析】方程两边先乘以(2/2),再去括号,移项,系数化为1,对根进行检验,即可.
【详解】W=六一2
2x=3-2(2%-2)
6x=7
7
X=-
6
经检验,“是原方程的根,
则方程的解为:%=>
【点睛】本题主要考查了解分式方程的知识.解分式方程时,需要对所求的根进行检验.
32.(2022•江苏•九年级开学考试)解分式方程:
⑴工3+五=4;
(23-^7=1-
【答案】(l).v=l
⑵原方程无解
【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式的解.
【详解】⑴泰十号=4,
=4,
2x-32X-3
方程两边都乘2厂3,得x-5=4(2工-3),
解得:x=l,
检验:当x=l时,2x-3#0,
以=1是原方程的解,
即原方程的解是x=l;
(2)=
方程两边都乘3(3.v-1),得l-3x=2(3.r-1),
解得:x
检验:当%:时,3(3.r-1)=0,
取号是增根,
即原方程无解.
【点睛】本题主要考查了解分式方程,利用了转化的思想,解分式方程注意要检验.转化成整式方程是解
此题的关键.
33.(2022•河南•辉县市冠英学校八年级期中)解方程.
⑴自一(X-l)(x+2)=1:
⑵茨+E=1.
【答案】⑴%二一3
(2)x=1
【分析】(1)根据解分式方程的步骤解答即可,注意要检验;
(2)根据解分式方程的步骤解答即可,注意要检验.
【详解】(1)解:方程两边同时乘最简公分母(%-1)(%+2),
得:x[x—1)—3=(X—1)(%+2),
解得:x=-1,
检验:将%=-#弋入最简公分母得(一:一1)(一:+2)H0,
所以%=是原分式方程的解.
(2)解:方程两边同时乘最简公分母3%-2,
得9%-7+钛-5=3x-2,
解得:x=1,
检验:将乃=1代入最简公分母得3x1—2工0,
所以x=l是原分式方程的解.
【点睛】本题考查了解分式方程,正确计算是解题的关键,解分式方程一定不能忘记检验.
34.(2022•湖南•慈利县教育科学研究室八年级期中)解分式方程:=二1-三
m2m2
【答案】771=5
【分析】根据解分式方程的一般步骤进行解答即可,切记,解分式方程需要检验.
【详解】解:去分母得5—m=m-2—3,
解得m=5,
经检验,m=5是原方程的解,
则原分式方程的解是m=5.
【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤是解本题的关键,注意,解分式方程需
要验根.
35.(2022・湖南•永州市剑桥学校八年级阶段练习)解分式方程
⑴*=2十七
⑵玛-六
【答案】⑴x=7
⑵无解
【分析】(1)将原方程去分母,化为整式方程,再根据解整式方程的步骤求解,最后检验即可;
(2)将原方程去分母,化为整式方程,再根据解整式方程的步骤求解.,最后检验即可;
(1)
解:3=2+£
去分母,得:1=2(%-3)-工
去括号,得:1=2%—6-%
移项、合并同类项,得:-X=7,
系数化为1,得:x=7,
经检验%=7是原方程的解,
故原方程的解为%=7;
(2)
解:*4=1
X-1%2-1
去分母,得:(%+1)2-4=/-1
去括号,得:X24-2%4-1—4=—1
移项、合并同类项,得:2x=2,
系数化为1,得:x=l,
经检验%=1是原方程的增根,
故原方程无解;
【点睛】本题考查解分式方程.掌握解分式方程的步骤是解题关键.
36.(2022•山东•招远市教学研究室八年级期中)解分式方程
(Ip——L.=上
''x-3x+3X2-9
⑵E-3=E
【答案】(1)无解
(2)x=3
【分析】(1)两边都乘以a+3)(%-3)化为整式方程求解,然后验根即可.
(2)两边都乘以%-2化为整式方程求解,然后验根即可.
【详解】(1)解:去分母,得:3(x4-3)-(%-3)=18,
解之得:%=3,
检验:把x=3代入(%+3)(%-3),得(%+3)(%-3)=0,
所以,原分式方程无解..
(2)解:整理得:£一3=三;
去分母,得:l-3(x-2)=1-x,
解之得:x=3,
检验:把%=3代入%-2,得:3-2工0,
所以,x=3是原分式方程的解.
【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式
方程求解,求出未知数的值后不要忘记检验.
37.(2022•湖南•宁远县仁和镇中学八年级阶段练习)解下列分式方程:
【答案】(l)x=l;
⑵k2.
【分析】(1)方程两边同时乘(x-2)化成整式方程,然后解这个方程并检验即可;
(2)方程两边同时乘(x+1)(.t-1)化成整式方程,然后解这个方程并检验即可;
(1)
方程两边同时乘(x-1),可得:l-2=x-2,
解得:x=l,
经检验:x=l是原分式方程的解,
团原分式方程的解为:x=l.
(2)
_(x+lXx-l)?
方程两边同时乘(x+1)(x-1),
可得:x(x+1)-(x+1)(x-1)=3,
整理得:x-2=0,
解得x=2,
检验:经检验:x=2是原分式方程的解,
团原分式方程的解为:x=2.
【点睛】本题考查了解分式方程,解题的关键是把方程两边同时乘以方程分母的最简公分母,把分式方程
转化为整式方程,然后解整式方程并检验,即可确定分式方程的根.
38.(2022•河南•郑州经开区外国语女子中学八年级期末)解分式方程:三+1=一二.
2X-12(l-2x)
【答案】无解
【分析】根据解分式方程的步骤,先去分母,然后移项合并同类项,解一元一次方程,最后验根;
[W]W:£S+1=_2_
方程两边都乘2(2x-1),得2a-2)4-2(2x-1)=-3
解得:%=条
检验:当%=;时,2(2%-1)=0,
所以%=;是增根,
即原分式方程无解.
【点睛】本题考查了分式方程的解法,掌握相关知识并熟练使用,同时注意解题中需注意的事项,尤其不
要忘了验根.
39.(2022・湖南•八年级阶段练习)解分式方程:
53X1
'(1)—3--3--x=1
(2)x_]_4
—(X-l)(X+3)*
【答案】⑴x=-4
⑵无解
【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解,检验后即可得到分式方程的解:
(2)分式方程去分母转化为整式方程,求出整式方程的解,检脸后即可得到分式方程的解.
(1)
解:方程整理得:--+=1»
X-3X-3
方程两边同乘以3)得:5+3.x=x-3,
解得:x=-4,
经检验:x=-4是原方程的解,
故分式方程的解为x=-4;
(2)
方程两边同乘以(%—1)(%+3)得,x(x+3)-(x-1)(x+3)=4,
解得:x=1,
检验,当x=l时,(%-1)(%+3)=0,
所以x=l是增根,原方程无解.
【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想〃,把分式方程转化为整式方程求解.解
分式方程一定注意要验根.
40.(2022•陕西省西安爱知中学八年级期末)解分式方程:
小42X+6
⑴工=A
(2)---=1.
''x+2x-1
【答案】⑴%=-5
⑵工=I
【分析】(1)方程两边都乘(%+1)(%-1)得出4(%+1)=2%-6,求出方程的解,再进行检验即
可;
(2)方程两边都乘(x+2)(%-1)得出2x(工一1)一%(x+2)=(%+2)求出方程的
解,再进行检验即可.
(1)
(1),=等
X-1X2-1
4_2-—6
x-1~(x+1)(x-1)'
方程两边都乘(%+1)(x-1),得4(%+1)=2x-6,
解得:x=—5,
检验:当%=-5时,(x+1)(x-1)。0,
所以%=-5是原方程的解,
即原方程的解是%=-5;
(2)
方程两边都乘(%+2)(%—1),得2%(%—1)—x(%+2)=(x+2)(x—1),
解得:%=:,
检验:当x=|时,(x+2)(x-1)40,
所以%=:是原方程的解,
即原方程的解是%
【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.
41.(2022•江苏・泰兴市济川初级中学八年级阶段练习)解分式方程:
(嘀母2;
⑵3+六=8;
【答案】⑴%=
(2)无解
【分析】(1)方程两边都乘2(%+1)得出2%=3%+4(%+1),求出方程的解,再进行检验即可;
(2)方程两边都乘%-7得出%-6-1=8(%-7),求出方程的解,再进行检验即可.
(1)
方程两边都乘以2Q+1),得
2x=3x+4(无+1),
解得
检验,当x=时,2(%+1)。0,
以=一:是方程的解,
即原方程的解是
(2)
解:—+—=
X-77-X8,
方程两边都乘X-7,得
x-6—1=8(%—7),
解得%=7,
检验,当%=7时,%-7=0,
取:=7是方程的增根,
即原方程无解.
【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.分式方程一•定要检验.
42.(2022•新疆•和硕县第二中学八年级期末)解分式方程:三=工
xX
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级数学计算题专项练习1000题汇编
- 二年级数学(上)计算题专项练习
- 荷花田管护合同(2篇)
- 南京工业大学浦江学院《土木工程施工技术与组织》2022-2023学年第一学期期末试卷
- 林口镇污水治理工程排水管网工程二期施工组织设计
- 瑞庆汽车发动机技术有限公司联合厂房施工组织设计
- 《醉翁亭记》说课稿
- 《用数学》说课稿
- 《我们的梦想》说课稿
- 科室结对子协议书(2篇)
- 宾馆酒店标准化-安全管理人员任命书
- 药房药品养护记录表
- 义务教育英语课程标准2022年英文版
- 中印边境争议地区
- htr-pm通风空调系统核电站hvac简介
- 工业园区企业环境风险和安全隐患排查情况表优质资料
- 土力学习题集及详细解答
- 临床微生物学检验-实验系列肠杆菌科的微生物检验
- GB/T 22844-2009配套床上用品
- GB/T 14683-2017硅酮和改性硅酮建筑密封胶
- 无人机校企合作协议
评论
0/150
提交评论