版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5章数据的收集与整理(提高篇)
一、选择题(每小题4分,共40分)
1.为了调查市一中学生的视力情况,在全校的2700名学生中随机抽取了100名学生,下列说法正确的是
()
A.此次调查属于全面调查
B.样本容量是100
C.2700名学生是总体
D.被抽取的每一名学生称为个体
2.要调查下列问题,适合采用抽样调查的是()
A.疫情期间,了解全校师生入校时体温情况
B.检测我国研制的C919大飞机的零件的质量
C.调查某批次汽车的抗撞击能力
D.选出某校短跑最快的学生参加全市比赛
3.某人从一袋黄豆中取出60粒染成蓝色后放回袋中并混合均匀.接着抓出180粒黄豆,数出其中有3粒
蓝色的黄豆,则估计这袋黄豆约有()
A.2400粒B.3600粒C.4200粒D.5400粒
4.某商场为了解用户最喜欢的家用电器,设计了如下尚不完整的调查问卷:
该商场准备在“①清洁电器,②微波炉,③洗衣机,④电饭锅,⑤扫地机,⑥厨房电器”中选取四个作
为问卷问题的备选项目,你认为最合理的是()
调查问卷
一年一月—日
你最喜欢的一种家用电器是一(单选)
A.
B.
C.
D.
A.①②③④B.②③④⑤C.③④⑤⑥D.①③⑤⑥
5.如图是某社区针对5月30日前该社区居民接种新冠疫苗的人数统计图.若接种第1针或第2针有1200
人,则接种第。针的还有()
接种第Q针
的人数
35%
接种第针
1接种第3针
的人数
的人数
38°o接种第2针
的人教5%
22?o
A.100人B.440人C.700人D.2000人
6.我国近十年的人口出生率及人口死亡率如图所示.
我国人口出生率及死亡率统计图
已知人口自然增长率=人口出生率-人口死亡率,下列判断错误的是()
A.与2012年相比,2021年的人口出生率下降了近一半
B.近十年的人口死亡率基本稳定
C.近五年的人口总数持续下降
D.近五年的人口自然增长率持续下降
7.某中学对学生最喜欢的课外活动进行了随机抽样调查,要求每人只能选择其中的一项.根据得到的数据,
绘制的不完整统计图如下,则下列说法中不正确的是()
70
60
50
40
30
20
10
A.这次调查的样本容量是200
B.全校1600名学生中,估计最喜欢体育课外活动的大约有500人
C.扇形统计图中,科技部分所对应的圆心角是36°
D.被调查的学生中,最喜欢艺术课外活动的有50人
8.某学习小组为了解本城市100万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10
个成年人吸烟,对于这个数据收集与处理的问题,下列说法正确的是()
A.该调查的方式是普查
B.本城市只有40个成年人不吸烟
C.本城市一定有20万人吸烟
D.样本容量是50
9.北京市体育中考现场考试共有三个项目,分为耐力、素质和球类三项,其中耐力为男子1000米跑,女
子800米跑.所有同学都要参加,止匕外,参加考试的同学需在素质和球类项目中分别选择一项参加考试.
选项规则如表1所示:
表1:北京市体育中考现场考试选项规则
项目耐力(必选)素质(任选一项)球类(任选一项)
男生1000米跑引体向上、实心球篮球绕杆、排球垫球、足球绕杆
女生800米跑仰卧起坐、实心球篮球绕杆、排球垫球、足球绕杆
小宇对初三4班40名同学的体育选项情况进行了统计,并根据其中部分信息给制了表2
表2:初三4班体育中考选项情况统计表
项目素质球类
仰卧起坐引体向上实心球篮球绕杆排球垫球足球绕杆
男生202
女生16
总计1715162
以下有四个推断
①一定有女生选择了实心球
②一定有男生同时选择引体向上和足球绕杆
③至少有一名女生同时选择仰卧起坐和篮球绕杆
④男生中同时选择实心球和篮球绕杆的至多有5人
所有合理推断的序号是()
A.①②B.①③C.②④D.③④
10.小靖想买一双好的运动鞋,于是她上网查找有关资料,得到下表:
颜色价格(元/双)备注
甲品牌红、白、蓝、灰450不宜在雨天穿
乙品牌淡黄、浅绿、白、黑700防水性很好
丙品牌浅绿、淡黄、白黄相间500防水性很好
丁品牌灰、白、蓝相间350防水性一般
她想买一双价格在300〜600元之间,颜色为红白相间或浅绿色或淡黄色,并且防水性能很好的鞋,那么
她应选()
A.甲品牌B.乙品牌C.丙品牌D.丁品牌
二、填空题(共4小题,每题5分,共计20分)
11.在一个有10万人的小镇,随机调查了1000人,其中200人看某电视台的早间新闻.那么该镇大约有
万人收看该电视台的早间新闻.
12.下列调查中,其中适合采用抽样调查的是(填序号)
①检测我市的空气质量
②为了解新型冠状病毒(SARS-CoV-2)确诊病人同一架飞机乘客的健康情况
③调查某班50名同学的视力情况
④为保证“神舟9号”成功发射,对其零部件进行检查
13.一个样本数量为90的样本数据的最大值为124,最小值为30,取组距为10,则可以分成组.
14.叶子是植物进行光合作用的重要部分,研究植物的生长情况会关注叶面的面积.在研究水稻等农作物
的生长时,经常用一个简洁的经验公式5=也来估算叶面的面积,其中a,b分别是稻叶的长和宽(如
k
图1),4是常数,则由图1可知左1(填”或试验小组采集了某个品种的稻叶
的一些样本,发现绝大部分稻叶的形状比较狭长(如图2),大致都在稻叶的名处“收尖”.根据图2进
7
行估算,对于此品种的稻叶,经验公式中上的值约为(结果保留小数点后两位).
三.解答题(共9小题。15-18每题8分,19-20每题10分,21-22每题12分,23题14分,共计60分)
15.某学校在开展“节约每一滴水”的活动中,从七年级的180名同学中任选出10名同学汇报了各自家
庭一个月的节水情况,将有关数据整理如下表:
节水量”0.511.52
同学数2341
请你估计这180名同学的家庭一个月节约用水的总量是多少?
16.为丰富同学们的课余生活,某校计划举行亲近大自然户外活动,现随机抽取了部分学生进行你最想去
的景点是“?”的问卷调查,要求学生必须从A(南湖公园),2(净月潭森林公园),C(长春动植物园),
D(北湖湿地公园)四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图,请完成下
列问题:
(1)求本次调查的学生人数;
(2)请将条形统计图补充完整;
(3)请计算扇形统计图中A(南湖公园)项目的圆心角度数.
17.习近平总书记多次强调“节水优先”,要在全社会形成节约用水,合理用水的新风尚.今年3月22日
是第二十八个“世界水日”.为宣传节约用水,小明随机走访调查了某小区部分家庭2月份的用水情况,
将收集到的数据整理并绘制成了如图所示的统计图:
(1)求该小区所有被调查家庭2月份的用水总量;
(2)若该小区共有300户家庭,请你通过计算估计该小区2月份的用水总量.
18.在“慈善一日捐”活动中,小明对全年级同学的捐款情况进行了抽样调查,并将收集的数据绘制成统
计图.其中捐款为100元的人数占抽取人数的25%.由统计图中给出的信息回答下列问题:
(1)一共抽取了人;
(2)补全统计图;
(3)若全年级有300名学生,请估计全年级学生中捐款为10元的人数.
19.近年来,各地广场舞噪音干扰的问题备受关注,相关人员对本地区15〜65岁年龄段的市民进行了随机
调查,并制作了如图6所示的统计图.市民对广场舞噪音干扰的态度有以下五种:A.没影响;B.影响
不大;C.有影响,建议做无声运动;D.影响很大,建议取缔;E.不关心这个问题.
(1)m=,A区域所对应的扇形圆心角为度;
(2)在此次调查中,“不关心这个问题”的有10人,一共调查了多少人?
(3)在(2)的前提下,将条形统计图补充完整.
20.一家服装店专卖羽绒服,下面是去年一年各月的销售表.
月份123456789101112
销量(件)100905011864653080110
根据上表回答下列问题.
(1)用一个适当的统计图表示去年各季度的销量情况.
(2)计算去年各季度销量在全年销量中所占百分比,并用适当的统计图表示.
(3)从统计图表中你能得出什么结论?你能为店老板今后的决策提出什么建议?
21.为了解学生的睡眠情况,某校随机抽取部分学生对他们最近两周的睡眠情况进行调查,得到他们每日
平均睡眠时长x(单位:h)的一组数据,将所得数据分为四组(A:x<8;B:8Wx<9;C:9Wx<10;
根据以上信息,解答下列问题:
(1)本次一共抽样调查了名学生.
(2)求出扇形统计图中。组所对应的扇形圆心角的度数.
(3)将条形统计图补充完整.
(4)若该校共有1200名学生,请估计最近两周有多少名学生的每日平均睡眠时长大于或等于9爪
22.在扬州市九年级学生一次学业水平测试中,成绩评定分A、B、C、。四个等第.为了解这次数学测试
成绩情况,从该市的农村、县镇、城市三类群体的学生中共抽取2000名学生的数学成绩进行统计分析,
相应数据的统计图表如下:
各类学生成绩人数统计表
人数ABCD
等第
类别
农村a200260100
县镇290110140c
城市240b20040
(注:等第A、B、C、。分别代表优秀、良好、合格、不合格)
(1)补全表格中缺少的数据:a=;b=;c=;
(2)若该市九年级共有60000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.
各类学生人数比例统计图
农村
口县城
23.某中学为了了解本校学生对球类运动的爱好情况,采用抽样的方法,从乒乓球、羽毛球、篮球和排球
四个方面抽查了若干名学生,在还没有绘制成功的“折线统计图”与“扇形统计图”中,请你根据已提
供的部分信息解答下列问题.
乒乓球
40%y篮排项目
球球
(1)在这次调查活动中,一共调查了名学生;
(2)通过计算,“排球”所在扇形的圆心角是多少度?
(3)请补全折线统计图;
(4)若该校有学生1300名,估计爱好篮球活动的约有多少名学生?
第5章数据的收集与整理(提高篇)
一、选择题(每小题4分,共40分)
1.为了调查市一中学生的视力情况,在全校的2700名学生中随机抽取了100名学生,下列
说法正确的是()
A.此次调查属于全面调查
B.样本容量是100
C.2700名学生是总体
D.被抽取的每一名学生称为个体
【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体
中所抽取的一部分个体.
【解答】解:A、此次调查属于抽样调查,故此选项不合题意;
B、样本容量是100,故此选项符合题意;
C、2700名学生的视力情况是总体,故此选项不合题意;
D,被抽取的每一名学生的视力情况称为个体,故此选项不合题意.
故选:B.
【点评】此题主要考查了总体、个体、样本.正确理解总体、个体、样本的概念是解决
本题的关键.
2.要调查下列问题,适合采用抽样调查的是()
A.疫情期间,了解全校师生入校时体温情况
B.检测我国研制的C919大飞机的零件的质量
C.调查某批次汽车的抗撞击能力
D.选出某校短跑最快的学生参加全市比赛
【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调
查得到的调查结果比较近似解答.
【解答】解:A.疫情期间,了解全校师生入校时体温情况,适合全面调查,故本选项不
合题意;
B.检测我国研制的C919大飞机的零件的质量,适合采用全面调查,故本选项不合题意;
C.调查某批次汽车的抗撞击能力,适合采用抽样调查,故本选项符合题意;
D.选出某校短跑最快的学生参加全市比赛,适合采用全面调查,故本选项不合题意.
故选:C.
【点评】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的
对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义
或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普
查.
3.某人从一袋黄豆中取出60粒染成蓝色后放回袋中并混合均匀.接着抓出180粒黄豆,数
出其中有3粒蓝色的黄豆,则估计这袋黄豆约有()
A.2400粒B.3600粒C.4200粒D.5400粒
【分析】用蓝色黄豆的数量除以所抽取样本中蓝色黄豆所占比例即可得.
3
【解答】解:估计这袋黄豆约有60+7而=3600(粒).
故选:B.
【点评】本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我
们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表
示相应样本的频率分布,从而去估计总体的分布情况.
4.某商场为了解用户最喜欢的家用电器,设计了如下尚不完整的调查问卷:
该商场准备在“①清洁电器,②微波炉,③洗衣机,④电饭锅,⑤扫地机,⑥厨房电器”
中选取四个作为问卷问题的备选项目,你认为最合理的是()
t醺I'可人
一年一月一日
你最喜欢的一种家用电器是—(单选)
A.
B.
C.
D.
A.①②③④下②③④⑤-E③④⑤⑥D.①③⑤⑥
【分析】根据调查问卷设置选项的不重复性、不包含性进行选择即可.
【解答】解:由于调查问卷的设置选项的“不重复、不包含、各个选项相互独立”可得,
②③④⑤符合题意.
故选:B.
【点评】本题考查调查收集数据的过程与方法,理解设置问卷的原则和方法是正确判断
的前提.
5.如图是某社区针对5月30日前该社区居民接种新冠疫苗的人数统计图.若接种第1针或
第2针有1200人,则接种第0针的还有(
A.100人B.440人C.700人D.2000人
【分析】根据扇形统计图的性质,计算该社区居民接种新冠疫苗人数,通过计算即可得
到答案.
【解答】解:根据题意,接种第1针和第2针人数占比为:38%+22%=60%,
.,•该社区居民接种新冠疫苗人数为:1200+60%=2000(人),
接种3针的人数为:2000X35%=700(人),
故选:C.
【点评】本题考查了扇形统计图的知识,解题的关键是熟练掌握扇形统计图的性质,从
而完成求解.
6.我国近十年的人口出生率及人口死亡率如图所示.
我国人口出生率及死亡率统计图
已知人口自然增长率=人口出生率-人口死亡率,下列判断错误的是()
A.与2012年相比,2021年的人口出生率下降了近一半
B.近十年的人口死亡率基本稳定
C.近五年的人口总数持续下降
D.近五年的人口自然增长率持续下降
【分析】根据折线统计图的信息解答即可.
【解答】解:由折线统计图可知,
A.与2012年相比,2021年的人口出生率下降了近一半,说法正确,故本选项不合题意;
B.近十年的人口死亡率基本稳定,说法正确,故本选项不合题意;
C.近五年的人口总数持续下降,说法错误,五年的人口总数增长速度变缓,故本选项符
合题意;
D.近五年的人口自然增长率持续下降,说法正确,故本选项不合题意;
故选:C.
【点评】本题考查了折线统计图,掌握人口自然增长率的定义是解答本题的关键.
7.某中学对学生最喜欢的课外活动进行了随机抽样调查,要求每人只能选择其中的一项.根
据得到的数据,绘制的不完整统计图如下,则下列说法中不正确的是()
7O
6O
5O
4O
3O
2O
IO
A.这次调查的样本容量是200
B.全校1600名学生中,估计最喜欢体育课外活动的大约有500人
C.扇形统计图中,科技部分所对应的圆心角是36°
D.被调查的学生中,最喜欢艺术课外活动的有50人
【分析】根据统计图分别判断各个选项即可.
【解答】解:•••10+5%=200,
.•.这次调查的样本容量为200,
故A选项结论正确,不符合题意;
50
V1600X200=400(人),
.♦•全校1600名学生中,估计最喜欢体育课外活动的大约有400人,
故B选项结论不正确,符合题意;
V200X25%=50(人),
•♦・被调查的学生中,最喜欢艺术课外活动的有50人,
故D选项结论正确,不符合题意;
200-50-50-10-70
V360°X200=36°,
...扇形统计图中,科技部分所对应的圆心角是36°,
故C选项结论正确,不符合题意;
故选:B.
【点评】本题主要考查统计的知识,熟练掌握扇形统计图等统计的知识是解题的关键.
8.某学习小组为了解本城市100万成年人中大约有多少人吸烟,随机调查了50个成年人,
结果其中有10个成年人吸烟,对于这个数据收集与处理的问题,下列说法正确的是()
A.该调查的方式是普查
B.本城市只有40个成年人不吸烟
C.本城市一定有20万人吸烟
D.样本容量是50
【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体
中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、
样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据
被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【解答】解:A.该调查的方式是抽样调查,此选项说法错误;
10
B.本城市成年人不吸烟的约有100X50=20(万人),此选项错误;
C.本城市大约有20万成年人吸烟,此选项错误;
D.样本容量是50,此选项正确;
故选:D.
【点评】本题考查用样本估计总体及抽样调查的有关概念,解题要分清具体问题中的总
体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所
不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
9.北京市体育中考现场考试共有三个项目,分为耐力、素质和球类三项,其中耐力为男子
1000米跑,女子800米跑.所有同学都要参加,此外,参加考试的同学需在素质和球类
项目中分别选择一项参加考试.
选项规则如表1所示:
表1:北京市体育中考现场考试选项规则
项目耐力(必选)素质(任选一项)球类(任选一项)
男生1000米跑引体向上、实心球篮球绕杆、排球垫球、足球绕杆
女生800米跑仰卧起坐、实心球篮球绕杆、排球垫球、足球绕杆
小宇对初三4班40名同学的体育选项情况进行了统计,并根据其中部分信息给制了表2
表2:初三4班体育中考选项情况统计表
项目素质球类
仰卧起坐引体向上实心球篮球绕杆排球垫球足球绕杆
男生202
女生16
总计1715162
以下有四个推断
①一定有女生选择了实心球
②一定有男生同时选择引体向上和足球绕杆
③至少有一名女生同时选择仰卧起坐和篮球绕杆
④男生中同时选择实心球和篮球绕杆的至多有5人
所有合理推断的序号是()
A.①②B.①③C.②④D.③④
【分析】本题主要考查统计表的读取.其中①②③④每个选项都需在读懂题目,并判断
出各个项目人数的前提下进行判断,因此本题的重难点在于判断各个项目的人数多少.
【解答】解:本题各个项目人数的多少,解题的关键在于球类里面.通过排球垫球,我
们可以得知,女生是16人,合计是16人,因此没有男生选择排球垫球.同理,没有女
生选择足球绕杆.又因为每位同学均需要在球类中选择一项,对于男同学而言,因为没
有选择排球垫球的,因此全部男同学都选择了篮球绕杆和足球绕杆,因此该班男生共有
20+2=22人,其中选择篮球绕杆20人,足球绕杆2人.同理,因为全班共有40名同学,
因此女生共有18人,其中选择排球垫球16人,因此篮球绕杆有2人.对于素质项目,
因为全班共有40人,出去仰卧起坐17人,引体向上15人,还剩余8人选择实心球.又
因为仰卧起坐只能女生选择,选择仰卧起坐的人数为17人,因此18名女生中,有1人
选择实心球.实心球中有7名是男生,另外15名男生选择的引体向上.下面我们分析选
项:
①一定有女生选择了实心球,正确,有1名女生选择.
②一定有男生同时选择引体向上和足球绕杆,无法判断,可能有.但是因为选择足球绕
杆的男生只有2人,这2人完全可以选择实心球,这种情况下②就不对.
③因为女生只有1人选择实心球,而选择篮球绕杆的女生为2人,因此另外1人就既选
择了篮球绕杆,又选择了仰卧起坐.选项正确.
④无法判断.不一定至多是5人,假如选择实心球的7名男生全部选择了篮球,此时同
时选择实心球和篮球绕杆的就有7人.选项错误.
综上,正确选项为①③,
故选:B.
【点评】本题考查统计表的读取分析能力,重点在于读懂统计表后,找出各个项目人数
的多少,再根据人数的多少判断①②③④各个选项是否正确,需要一定的逻辑思维,对
逻辑思维有一定的锻炼.
10.小靖想买一双好的运动鞋,于是她上网查找有关资料,得到下表:
颜色价格(元/双)备注
甲品牌红、白、蓝、灰450不宜在雨天穿
乙品牌淡黄、浅绿、白、黑700防水性很好
丙品牌浅绿、淡黄、白黄相间500防水性很好
丁品牌灰、白、蓝相间350防水性一般
她想买一双价格在300〜600元之间,颜色为红白相间或浅绿色或淡黄色,并且防水性能
很好的鞋,那么她应选()
A.甲品牌B.乙品牌C.丙品牌D.丁品牌
【分析】根据要求,利用表格中的信息一一判断即可.
【解答】解:价格在300〜600元之间,不能选乙,
又要面子颜色为红白相间或浅绿色或淡黄色,并且防水性能很好,
故选:C.
【点评】本题考查统计表,解题的关键是理解题意,利用表格信息解决问题.
二.填空题(共4小题)
11.在一个有10万人的小镇,随机调查了1000人,其中200人看某电视台的早间新闻.那
么该镇大约有万人收看该电视台的早间新闻.
【分析】直接利用概率公式求解即可求得答案.
【解答】解:根据题意得:
200
10X1000=2(万人),
答:该镇大约有2万人收看该电视台的早间新闻.
故答案为:2.
【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
12.下列调查中,其中适合采用抽样调查的是①(填序号)
①检测我市的空气质量
②为了解新型冠状病毒(SARS-CoV-2)确诊病人同一架飞机乘客的健康情况
③调查某班50名同学的视力情况
④为保证“神舟9号”成功发射,对其零部件进行检查
【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查
得到的调查结果比较近似.
【解答】解:①检测我市的空气质量,适合采用抽样调查方式;
②为了解新型冠状病毒(SARS-CoV-2)确诊病人同一架飞机乘客的健康情况,适合
采用全面调查方式;
③调查某班50名同学的视力情况,人数较少,适合采用全面调查方式;
④为保证'‘神舟9号”成功发射,对其零部件进行检查,适合采用全面调查方式;
所以,上列调查中,其中适合采用抽样调查的是①,
故答案为:①.
【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考
查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的
意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选
用普查,事关重大的调查往往选用普查.
13.一个样本数量为90的样本数据的最大值为124,最小值为30,取组距为10,则可以分
成10组.
【分析】极差除以组距,不小于该值的最小整数即为分组的组数.
124-30
【解答】解:V-=9.4,
.•.分10组,
故答案为:10.
【点评】本题考查了频数分布直方图,要知道两个关键数据:组距和极差.
14.叶子是植物进行光合作用的重要部分,研究植物的生长情况会关注叶面的面积.在研究
水稻等农作物的生长时,经常用一个简洁的经验公式S=且回来估算叶面的面积,其中a,
k
b分别是稻叶的长和宽(如图1),4是常数,则由图1可知印>1(填”或
“〈”).试验小组采集了某个品种的稻叶的一些样本,发现绝大部分稻叶的形状比较狭
长(如图2),大致都在稻叶的4处“收尖”.根据图2进行估算,对于此品种的稻叶,经
7
验公式中左的值约为1.27(结果保留小数点后两位).
图1图2
【分析】根据矩形的面积大于叶的面积,即S<ab,可得k>l,再把叶片的尖端可以近
似看作等腰三角形,则稻叶可以分为等腰三角形及矩形两部分,再求出k的大约值即可.
【解答】解:由图1可知,矩形的面积大于叶的面积,即S<ab,
ab
.*.S=k<ab,
由图2可知,叶片的尖端可以近似看作等腰三角形,
稻叶可以分为等腰三角形及矩形两部分,
矩形的长为43等腰三角形的高为3t,稻叶的宽为b,
7tb
114
7FX3tb+4tb77
:.k=2=11-1.27,
故答案为:>,1.27.
【点评】本题主要考查数据的处理及应用,熟练掌握不等式的性质,理清题意,准确找
出等量关系时解答此题的关键.
三.解答题(共9小题)
15.某学校在开展“节约每一滴水”的活动中,从七年级的180名同学中任选出10名同学
汇报了各自家庭一个月的节水情况,将有关数据整理如下表:
节水基”0.511.52
同学数2341
请你估计这180名同学的家庭一个月节约用水的总量是多少?
【分析】先计算出样本中10名同学的平均用水量,再用样本平均用水量乘以总人数即可.
【解答】解:这10名同学的平均用水量为=1.2,
所以估计这180名同学月用水量为1.2X180=216(t).
【点评】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有
代表性、容量越大,这时对总体的估计也就越精确.
16.为丰富同学们的课余生活,某校计划举行亲近大自然户外活动,现随机抽取了部分学生
进行你最想去的景点是“?”的问卷调查,要求学生必须从A(南湖公园),B(净月潭
森林公园),C(长春动植物园),D(北湖湿地公园)四个景点中选择一项,根据调查结
果,绘制了如下两幅不完整的统计图,请完成下列问题:
(1)求本次调查的学生人数;
(2)请将条形统计图补充完整;
(3)请计算扇形统计图中A(南湖公园)项目的圆心角度数.
【分析】(1)根据选B的人数和所占的百分比,可以求得本次调查的人数;
(2)用总人数减去其它景点的人数求出C的人数,即可补全条形统计图;
(3)用3600乘以A的百分比即可求出扇形统计图中A(南湖公园)项目的圆心角度数.
【解答】解:(1)664-55%=120(人),
.•.本次调查的学生人数为120人;
(2)C的人数为120-18-66-6=30(人),
补全条形统计图如下:
M数
18
(3)360°X120=54°,
答:扇形统计图中A(南湖公园)项目的圆心角度数为54°.
【点评】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结
合的思想解答.
17.习近平总书记多次强调“节水优先”,要在全社会形成节约用水,合理用水的新风尚.今
年3月22日是第二十八个“世界水日”.为宣传节约用水,小明随机走访调查了某小区
部分家庭2月份的用水情况,将收集到的数据整理并绘制成了如图所示的统计图:
(2)若该小区共有300户家庭,请你通过计算估计该小区2月份的用水总量.
【分析】(1)把所有用户的水量加起来即可得出答案;
(2)用总户数乘以平均每户的用水量即可得出答案.
【解答】解:(1)所有被调查家庭2月份的用水总量为:1X1+1X2+3X3+6X4+4X5+2
X6+2X7+1X8=90(吨);
(2)根据题意得:
90
20X300=1350(吨),
答:估计该小区2月份的用水总量为1350吨.
【点评】此题考查了条形统计图和用样本估计总体,弄清题意是解本题的关键.
18.在“慈善一日捐”活动中,小明对全年级同学的捐款情况进行了抽样调查,并将收集的
数据绘制成统计图.其中捐款为100元的人数占抽取人数的25%.由统计图中给出的信
息回答下列问题:
(1)一共抽取了60人;
(2)补全统计图;
(3)若全年级有300名学生,请估计全年级学生中捐款为10元的人数.
【分析】(1)根据捐款的人数和所占的百分比即可得出抽取的总人数;
(2)用总人数减去其它捐款的人数,求出捐款20元的人数,从而补全统计图;
(3)用总人数乘以捐款为10元的人数所占的百分比即可得出答案.
【解答】解:(1)共抽取的人数有:15・25%=60(人).
故答案为:60;
(2)捐款20元的人数为60-20-15-10=15(人),补全统计图如下:
20
(3)300X60=100(人),
答:估计全年级学生中捐款为10元的有100人.
【点评】本题考查了条形统计图的知识,解题的关键是读懂题意及统计图,并从统计图
中整理出进一步解题的信息.
19.近年来,各地广场舞噪音干扰的问题备受关注,相关人员对本地区15〜65岁年龄段的
市民进行了随机调查,并制作了如图6所示的统计图.市民对广场舞噪音干扰的态度有
以下五种:A.没影响;B.影响不大;C.有影响,建议做无声运动;D.影响很大,建
(1)rn=32,A区域所对应的扇形圆心角为72度:
(2)在此次调查中,“不关心这个问题”的有10人,一共调查了多少人?
(3)在(2)的前提下,将条形统计图补充完整.
【分析】(1)用1减去A,D,B,E的百分比即可,运用A的百分比乘360°即可.
(2)用不关心的人数除以对应的百分比可得.
(3)求出25-35岁的人数再绘图.
【解答】解:(1)m%=l-33%-20%-5%-10%=32%,
所以m=32,
A区域所对应的扇形圆心角为:360°义20%=72°,
故答案为:32,72;
(2)一共调查的人数为:10・5%=200(人),
故一共调查了200人;
(3)25-35岁的人数为:200-10-30-40-70^50(人).
调查中给出建议的
【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统
计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;
扇形统计图直接反映部分占总体的百分比大小.
20.一家服装店专卖羽绒服,下面是去年一年各月的销售表.
月份123456789101112
(件)100905011864653080110
根据上表回答下列问题.
(1)用一个适当的统计图表示去年各季度的销量情况.
(2)计算去年各季度销量在全年销量中所占百分比,并用适当的统计图表示.
(3)从统计图表中你能得出什么结论?你能为店老板今后的决策提出什么建议?
【分析】根据题意,结合统计图各自的特点:
(1)要求表示各季度的销售情况,应选用条形统计图;
(2)要求表示每季度的销量在全年中所占的百分比,应选用扇形统计图;
(3)从作出的统计表中,通过分析数据,可以作出结论,提出建议.
【解答】解:(1)一、二、三、四季度销售量分别为240件、25件、15件、220件.
可用条形图表示:
(2)可求总销售量为:500件.
三、四季度销售量占总销售量的百分比分别为48%、5%、3%、44%.
可用扇形图表示:
□—
・二
口三
口四
(3)从图表中可以看到二、三季度的销售量小,一、四季度的销售量大.
建议旺季时多进羽绒服,淡季时转进其它货物或租给别人使用.
【点评】本题考查的是统计图的选择,理解各种统计图所反映数据的特征是正确选择的
关键.
21.为了解学生的睡眠情况,某校随机抽取部分学生对他们最近两周的睡眠情况进行调查,
得到他们每日平均睡眠时长x(单位:h)的一组数据,将所得数据分为四组(4尤<8;
B-.8Wx<9;C:9Wx<10;D-.尤力10),并绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)本次一共抽样调查了50名学生.
(2)求出扇形统计图中。组所对应的扇形圆心角的度数.
(3)将条形统计图补充完整.
(4)若该校共有1200名学生,请估计最近两周有多少名学生的每日平均睡眠时长大于
或等于9/2.
【分析】(1)由B组人数及其所占百分比求出总人数;
(2)用360°乘以D组人数所占比例即可;
(3)根据总人数求出A组人数,从而补全图形;
(4)用总人数乘以睡眠时长大于或等于9h人数所占比例即可.
【解答】解:(1)本次调查的学生人数为16・32%=50(名),
故答案为:50;
2
(2)表示D组的扇形圆心角的度数为360°X50=14.4°;
(3)A组人数为50-(16+28+2)=4(名),
补全图形如下:
28+2
(4)1200X50=720(名).
答:估计该校最近两周有720名学生的每日平均睡眠时长大于或等于9h.
【点评】本题考查条形统计图、扇形统计图,理解两个统计图中数量之间的关系是正确
计算的前提.
22.在扬州市九年级学生一次学业水平测试中,成绩评定分A、B、C、D四个等第.为了
解这次数学测试成绩情况,从该市的农村、县镇、城市三类群体的学生中共抽取2000名
学生的数学成绩进行统计分析,相应数据的统计图表如下:
各类学生成绩人数统计表
人数ABCD
等第
类别
农村a200260100
县镇290110140c
城市24
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版玫瑰精油神经酸胶囊产品研发合作合同2篇
- 活动楼施工组织设计
- 初中数学微课课件
- 《客户关系管理实务》期末考试试卷7-6
- 《地表水水质自动监测数据审核技术规范》(征求意见稿)
- 《客户关系管理实务》电子教案 11客户关系的选择
- 北师大版七年级生物上册第3单元过关训练课件
- 部编二上拍手歌说课
- 《文房石砚石》课件
- 教科版小学综合实践6下(教案+课件)3未来的汽车的探索与实践
- 2024冬季安全十防措施专题培训
- 陕煤集团笔试题库及答案
- 33 《鱼我所欲也》对比阅读-2024-2025中考语文文言文阅读专项训练(含答案)
- 2022年国防军工计量检定人员考试附有答案
- 第8讲-人无精神则不立-国无精神则不强-读本解读课件(9张)
- 《中华民族共同体概论》考试复习题库(含答案)
- 2023-2024学年深圳市初三中考适应性考试英语试题(含答案)
- NB-T 47013.15-2021 承压设备无损检测 第15部分:相控阵超声检测
- 复变函数论与运算微积智慧树知到课后章节答案2023年下哈尔滨工业大学(威海)
- 口腔修复学课件 桩核冠2015
- 二十五章子宫颈肿瘤课件
评论
0/150
提交评论