2024-2025学年人教版九年级数学上册重难点专练:一元二次方程(60题)(原卷版)_第1页
2024-2025学年人教版九年级数学上册重难点专练:一元二次方程(60题)(原卷版)_第2页
2024-2025学年人教版九年级数学上册重难点专练:一元二次方程(60题)(原卷版)_第3页
2024-2025学年人教版九年级数学上册重难点专练:一元二次方程(60题)(原卷版)_第4页
2024-2025学年人教版九年级数学上册重难点专练:一元二次方程(60题)(原卷版)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一元二次方程易错必刷题型专训

(60题20个考点)

【易错必刷——元二次方程的定义】(共3小题)

1.(23-24八年级下•安徽六安•阶段练习)若关于x的方程(加+1)^^+4》-5=0是一元二次方程,则机的

值是()

A.0B.-1C.1D.±1

5x

2.(23-24八年级下•全国•假期作业)下列式子:①2/+X-3;②k匚=2;©t2-m=l-4t-m;④

X+1J

(x+1)2=2(x+l);⑤办2+bx+c=0;(6)x2+2x=x2-1;⑦(矿+。+1*=0;⑧Jx+1=x-1.其中一定是

一元二次方程的有(把所有正确选项的序号都填上)

3.(2022七年级上•浙江•专题练习)已知(加2一1)/-(加+Dx+8=0是关于x的一元一次方程,求代数式

199(m+x)(x-2m)+m的值.

【易错必刷二一元二次方程的一般形式】(共3小题)

1.(23-24九年级上•四川遂宁•期末)将一元二次方程5x2-1=4x化成一般形式后,二次项系数、一次项系

数和常数项分别为()

A.5、—1、4B.5、4、—1C.5、一4、一1D.5、一1、一4

2.(23-24九年级上•江苏扬州•期中)把方程(3x-2)(x+1)=8化为ax2+bx+c=0(a>0)的形式为.

3.(22-23九年级上•广东惠州•阶段练习)把方程(2/+3)2-2(f-5)2=-41先化成一元二次方程的一般形式,

再写出它的二次项系数、一次项系数和常数项.

【易错必刷三一元二次方程的解】(共3小题)

1.(23-24八年级下•浙江温州•期中)若。是关于x的方程3x2_x-l=0的一个根,贝U2024-6/+2。的值是

A.2026B.2025C.2023D.2022

2.(23-24八年级下•吉林长春•期中)已知X=〃是方程Y+%_1=o的根,则式子3"+3〃+2021的值

为_____________

3.(23-24九年级上•北京海淀•期中)已知加是方程%2_工_2=0的根,求代数式加(加-1)+5的值.

J【易错必刷四一元二次方程的解的估算】(共3小题)

1.(23-24八年级下•浙江杭州•阶段练习)已知/一3》+1=0,依据下表,它的一个解的范围是()

X2.52.62.72.8

-3x+1-0.25-0.040.190.44

A.2.5<x<2.6B.2.6<x<2.7C.2.7<x<2.8D.不确定

2.(23-24八年级下•江苏苏州•期中)观察表格,一元二次方程一一2x-1.1=0的一个解的取值范围

是.

X1.31.41.51.61.71.81.9

%22x—1.1-0.71-0.54-0.35-0.140.090.340.61

3.(23-24九年级上•山西吕梁•阶段练习)阅读与思考:

下面是小华求一元二次方程的近似解的过程.

如图,这是一张长8cm、宽6cm的矩形纸板,将纸板四个角各剪去一个同样大小的正方形,可制成一个底

面积是12cm2的无盖长方体纸盒.小华在做这道题时,设剪去的正方形边长为xcm,列出关于x的方程

(8-2x)(6-2x)=12,整理得/一7x+9=0.

他想知道剪去的边长到底是多少,下面是他的探索过程.

探索方程的解:

第一步:

X-1012

x2-7x+9179

因此:<X<,

第二步:

X1.51.61.71.8

x2-7x+90.750.36-0.01-0.36

因此:<X<.

(1)请你帮助小华完成表格中未完成的部分,并写出X的范围;

(2)通过以上探索,请直接估计出x的值.(结果保留一位小数)

j【易错必刷五直接开平方法】(共3小题)

1.(23-24八年级下•广西梧州•期中)已知方程(x-2)2=0的解也是方程x?-2加x+l=O的一个解,则优的值

是()

54

A.2B.-2C.-D.-

45

2.(23-24八年级下•安徽淮北•阶段练习)方程(x+5)2-16=0的解是.

3.(23-24八年级下•全国•假期作业)用直接开平方法解下列方程:

("-9=0

(2)3/-54=0.

3【易错必刷六配方法】(共3小题)

1.(2024•山东聊城•二模)用配方法解一元二次方程无2+6才+3=0时,将它化为(无+加”的形式,则加-"

的值为()

A.3B.0C.-1D.-3

2.(23-24八年级下•山东烟台•期中)把关于x的一元二次方程K-8x+c=0配方,得(x-加尸=11,贝。

c+m=.

3.(23・24八年级下•安徽亳州•期中)解方程:X2-2X-3=1.

3【易错必刷七配方法的应用】(共3小题)

1.(23-24八年级上•福建泉州•期中)阅读材料:数学课上,老师在求代数式/一4》+5的最小值时,利用公

式/+2M+62=5+6)2,对式子作这样的变形:/+4x+5=》2+4x+4+l=(x+2)2+1,H^j(x+2)2>0,

所以(x+2『+121,当x=-2时,(x+2『+l=l,因此/+4x+5的最小值是1.类似地,代数式一f+6x+4

有()

A.最小值为-9B.最小值为-5

C.最大值为5D.最大值为13

2.(23-24九年级上•山东青岛•期中)我们已经学习了利用配方法解一元二次方程,其实配方法还有其它重

要应用.

例如:求代数式-+4X+5的最小值?解答过程如下:

解:X2+4X+5=X2+4X+4+1=(X+2)2+1.

v(x+2)2>0,

.•.当x=-2时,(龙+2)2的值最小,最小值是0,

.-.(X+2)2+1>1,

.•.当(x+2)2=0时,(x+2y+l的值最小,最小值是1,

.­.x2+4x+5的最小值为1.

根据上述方法,可求代数式/一6苫+12当苫=时有最(填“大”或“小”)值,为.

3.(21-22八年级上•内蒙古赤峰•期末)仔细阅读材料,再尝试解决问题:完全平方式

222

a±2ab+b=(a±b)以及的值为非负数的特点在数学学习中有广泛的应用.比如:已知孤丁满足

x2-2x+y2+6y+]0=0,求与、的值.我们可以这样处理:

解:•.・10=9+1(拆项),

_2x+1)+(y2+6y+9)=0,

••.(x-1)2+(>>+3)2=0(配方),

Xv(x-l)2>0,(y+3)2>0,

x-1=0,y+3=0,

———3

上面主要是采用了拆项后配成完全平方式的方法,再利用非负数的性

质来解决问题.

请利用拆项配方解题思路,解答下列问题:

(1)若x2+4x++5=0,则x=,y~;

(2)已知x,_V满足5x2-49+/一6工+9=0,求状,y的值;

(3)直接写出4+2x-J的最大值.

劣【易错必刷八根据判别式判断一元二次方程根的情况】(共3小题)

1.(23-24九年级下•云南昆明•阶段练习)已知关于x的一元二次方程,-5x+5=O的根的情况,下列说法

正确的是()

A.有两个不相等的实数根B.有两个相等的实数根

C.没有实数根D.无法确定

2.(23-24九年级上•西藏林芝・期末)一元二次方程,+2工-1=0根的判别式的值为.

3.(2023•贵州黔东南•一模)已知:关于x的一元二次方程/+〃7x=2-7〃,

(1)把这个方程化成一元二次方程的一般形式;

(2)求证:无论"2取何值,这个方程总有两个不相等的实数根.

$【易错必刷九根据一元二次方程根的情况求参数】(共3小题)

1.(2024・安徽六安•一模)关于x的一元二次方程一一2》-后=0有两个不相等实数根,则左的取值范围是

()

A.k<-lB.k>-lC.k>\D.左>-1且左20

2.(2024•江苏南京•三模)若关于x的方程近2-6x-9=0有实数根,则上的取值范围是.

3.(2024・四川南充一模)关于x的一元二次方程无2-(2左-1)》+/_2=0有实数根.

(1)求左的取值范围;

(2)如果后是符合条件的最大整数,且一元二次方程(小-1)无2+工+加-3=0与方程/_(2"1卜+公_2=0有

一个相同的根,求此时〃?的值.

/【易错必刷十公式法】(共3小题)

1.(23-24八年级下•安徽安庆・期中)若关于x的一元二次方程的根为尤=4±J(-4)2-4x1x(-2),则这个方

2x1

程是()

A.f+4x-3=0B.f-4x-l=0C.x2+4x-5=0D.x2—4x—2=0

2.(23-24七年级下•安徽马鞍山•期中)如果关于x的一元二次方程办2+乐+。=()(02())有两个实数根,且

其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程/+x=0的两个根是

再=0,x2=-l,则方程/+x=o是“邻根方程”.若关于X的方程办2+6x+1=0(。>0)是“邻根方程”,令

t=\Qa-b2,贝l|f的最大值是.

a3b-ab3(a>b)

3.(23-24八年级下•安徽阜阳•期中)对于实数a,b,定义新运算"#":a#b=\}i,例如:

—+—(a<b)

[ab''

4#2,因为4>2,所以4#2=43*2-4x23=96.

(1)求(-2)#(-5)的值;

(2)若占,%是一元次方程/-5尤-6=0的两个根,求国#工2的值.

今【易错必刷十一因式分解法】

1.(23-24八年级下•安徽亳州•期中)关于x的一元二次方程x(x-2)=2-x的根是()

A.-1B.0C.1和2D.-1和2

2.(2024•江西萍乡•二模)已知-2是关于x的一元二次方程x'+fcc-6=0的一个根,则这个方程的另一个根

为.

3.(2024八年级下•浙江•专题练习)有一个直角三角形,它的两边长是方程/_(2左+3勿+左2+3后+2=0的

两根,且第三条边长为5,求左的值?

j【易错必刷十二换元法】(共3小题)

1.(23-24八年级下•浙江金华•阶段练习)已知关于x的方程“(无+加『+6=0的解是否=-2,x2=\(a,m,

b均为常数,QW0),那么方程a(2x+冽+1)2+6=0的解是()

。13

A.石=-2,%=1B.再=0,9=~~

C.玉=-3,9=3D.无法求解

2.(2024・上海徐汇•三模)如果实数x满足一+乙一21了+4]-1=0,那么x+工的值是______.

XXJX

3.(23-24八年级下•黑龙江哈尔滨•阶段练习)阅读下面的材料,回答问题:

解方程/一5/+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:

设那么无4=必,于是原方程可变为必一5了+4=0①,解得乂=1,%=4.

当>=1时,/=1,x=±l;

当y=4时,x2=4,x=±2;

;■原方程有四个根:%=1,x2=—I,x3=2,x4=—2.

这一方法,在由原方程得到方程①的过程中,利用“换元法”达到降次的目的,体现了数学的转化思想.

⑴方程X4-X2-6=0的解为.

⑵仿照材料中的方法,尝试解方程(/+4-4(/+x)-12=0.

31易错必刷十三一元二次方程根与系数的关系】

1.(2024•内蒙古呼和浩特•二模)若abwl,且有5/+2024。+9=0,及96?+20246+5=0,贝的值是

b

()

2.(23-24八年级下•浙江嘉兴・期末)已知关于x的一元二次方程办2+(a+2)x+l=0有两个不相等的实数根

西,三,且西<1<%,则实数a的取值范围为.

3.(2024•山东潍坊•二模)已知X],々是关于x的一元二次方程Y+2x-左=0的两根.

(1)求人的取值范围;

⑵若再+3x2=0,求左的值.

$【易错必刷十四构造一元二次方程解决问题】(共3小题)

1.(2024・内蒙古呼和浩特二模)若加1,且有5/+2。240+9=。,及胡+2。2咏5=。,则狮值是

()

2.(2024•四川内江•二模)已知实数。,6满足=^+1=56,则白+:=______

ab

3.(23-24八年级下•广西贺州•期中)阅读材料:

材料:关于x的一元二次方程办2+区+。=0伍/0)的两个实数根%1,々和系数。,b,c有如下关系:

bc

Xy+%2=----,再%=一;

aa

根据上述材料,结合你所学的知识,完成下列问题:

⑴类比:1元二次方程2#+3尤-1=0的两个实数根为勿,n,则m+〃=_;mn=_.

(2)应用:己知一元二次方程2x2+3x-l=0的两个实数根为小,",求/+〃2的值;

(3)提升:已知实数s,,满足2s2+3s-1=0,2»+3/—1=0且sW,求---的值.

st

【易错必刷十五传播问题】(共3小题)

1.(23-24八年级下•浙江杭州•期中)流行性感冒传染迅速,若有一人感染,经过两轮传染后共有100人患

病,设每轮传染中平均一人传染了x人,可列出的方程是()

A.(x+1)2=100B.l+(x+l)2=100

C.x+x(l+x)=100D.1+x+x2=100

2.(2024•重庆大渡口•二模)初三某班同学互赠纪念卡片,若每两个同学均互赠一张,最终赠送卡片共1892

张,设全班共有x人,根据题意,可列方程为—.

3.(22-23九年级下•吉林长春•阶段练习)有两人患了流感,经过两轮传染后共有242人患了流感,每轮传

染中平均一个人传染了几个人?

劣【易错必刷十六增长率问题】(共3小题)

1.(2024年黑龙江省龙东地区部分学校中考四模数学试题)2024龙年春晚主题为“龙行矗雕(da),欣欣家

国”,“篇”这个字引发一波热门关注.据记载,“醯”出自第一部楷书字典《玉篇》,“龙行矗矗”形容龙腾飞的

样子,昂扬而热烈.某服装店购进一款印有“■”字图案的上衣,据店长统计,该款上衣1月份销售量为150

件,3月份销售量为216件,则该款上衣销售量的月平均增长率为()

A.20%B.22%C.25%D.26%

2.(23-24九年级下•重庆•期中)某县开展老旧小区改造,2020年投入此项工程的专项资金为1000万元,

2021、2022年投入资金一共为3440万元.设该县这两年投入老旧小区改造工程专项资金的年平均增长率为

x,根据题意,可列方程为.

3.(2024八年级下•浙江•专题练习)2022年冬奥会在北京顺利召开,冬奥会吉祥物冰墩墩公仔爆红.据统

计冰墩墩公仔在某电商平台1月份的销售量是5万件,3月份的销售量是7.2万件.

(1)若该平台1月份到3月份的月平均增长率都相同,求月平均增长率是多少?

(2)市场调查发现,某一间店铺冰墩墩公仔的进价为每件60元,若售价为每件100元,每天能销售20件,

售价每降价1元,每天可多售出2件,为了推广宣传,商家决定降价促销,同时尽量减少库存,若使销售

该公仔每天获利1200元,则售价应降低多少元?

【易错必刷十七营销问题】(共3小题)

1.(23-24九年级下•山东淄博・期中)某连锁超市购进一款年货大礼包,经调研发现,当该款大礼包每盒的

售价为49元时,每天可售出150盒,每盒的售价每降低1元,每天的销量增加20盒,要使该款大礼包每天

的销售额达到6000元,每盒的售价应降低多少元?若设该款大礼包每盒降价x元,则可列方程为()

A.(49-x)1150+型]=6000B.(49+x)1150+型]=6000

C.(49+x)(150+20x)=6000D.(49一x)(l50+20x)=6000

2.(2024・广东佛山•一模)香云纱作为广东省佛山市特产,中国国家地理标志产品,是世界纺织品中唯一用

纯植物染料染色的丝绸面料,被纺织界誉为“软黄金”,在某网网店,香云纱连衣裙平均每月可以销售120件,

每件盈利200元.为了尽快减少库存,决定降价促销,通过市场调研发现,每件每降价20元,则每月可多售

出30件.如果每月要盈利2.88万元,则每件应降价元.

3.(23-24八年级下•安徽安庆•期中)某水果商店经销一种名为“阳光玫瑰”水果,现进行春日促销,原价每

千克50元,连续两次降价后每千克32元,若每次下降的百分率相同.

(1)求每次下降的百分率;

(2)若每千克盈利10元,每天可售出250千克,经市场调查发现,在进货价不变的情况下,商场决定采取适

当的涨价措施,若每千克涨价1元,日销售量将减少10千克,现该商场要保证每天盈利3000元,且要尽

快减少库存,那么每千克应涨价多少元?

A【易错必刷十八与图形有关的问题】(共3小题)

I.(23-24八年级下•浙江温州•期中)如图,一张长宽比为5:3的长方形纸板,剪去四个边长为5cm的正方

形,用它做一个无盖的长方体包装盒.要使包装盒的容积为200cm3(纸板的厚度略去不计),问这张长方形

纸板的长与宽分别为多少厘米?若设这张矩形纸板的长为5x厘米,则由题意可列出的方程是()

_王5cm

A.5(5x+10)(3x+10)=200B.5(5x-5)(3x-5)=200

c.5(5x+10)(3x-10)=200D.5(5x-10)(3x-10)=200

2.(23-24八年级下•浙江•期中)如图是一块长方形菜地4BCD,AB=am,AD=bm,面积为Sn?.现将边

N8增加1m,边AD增加2m,若有且只有一个。的值,使得到的长方形面积为2sm?,则S的值是.

3.(23-24八年级下•山东济宁•期中)如图,要修建一个长方形鸡场,鸡场的一边靠墙(墙长为18米),其

余三边用竹篱笆,篱笆的总长度为35米,围成长方形鸡场的四周不能有空隙.

(1)若要围成鸡场的面积为150平方米,则鸡场的长和宽各应为多少米?

(2)围成鸡场的面积能达到160平方米吗?如果能,写出计算过程,如果不能,说明理由.

J【易错必刷十八动态几何问题】(共3小题)

1.(23-24九年级上•河北廊坊・期末)如图,在中,AC=50m,BC=40m,/C=90。,点尸从点/

开始沿NC边向点C以2m/s的速度匀速移动,同时另一点。由C点开始以3m/s的速度沿着射线匀速移

动,当其中一点到达终点时,两点同时停止运动.当△PC0的面积等于300m2时,运动时间为()

C.5秒或20秒D.不确定

2.(23-24九年级上•河南南阳•阶段练习)如图,在AABC中,ZC=90°,NC=8cm,BC=6cm,点尸从点/

出发沿NC边向点C以lcm/s的速度移动,点。从C点出发沿C8边向点8以2cm/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论