版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题05向量专题(数学文化)
一、单选题
1.(2022•全国•高三专题练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪
花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,
又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:
从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉
底边,重复进行这一过程.已知图①中正三角形的边长为6,则图③中亚.两的值为()
【答案】A
【分析】在图③中,以。为坐标原点建立如图所示的平面直角坐标系,由向量的运算求得而,丽的坐标,
再由数量积的坐标表示计算.
【详解】在图③中,以。为坐标原点建立如图所示的平面直角坐标系,
|W|=4,两=(2cos|>2sinq)=(2,2A^),
MP|=|,即丽=(*0),
2__.1
由分形知PN〃。/0,所以而=(乙,
33
^^XON=OM+MP+PN=
所以两•网=2x5+2』x羊=24.
故选:A.
2.(2023•全国•高二专题练习)庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非
常优美的几何图形,且与黄金分割有着密切的联系,在如图所示的正五角星中,以A,B,C,D,E为顶点
上L下列关系中正确的是(
的多边形为正五边形,且「
A1
A.BP-TS=J^RS
2
B.CQ+TP=^^-TS
C.ES-AP=Jh^BQ
D.AT+BQ=^-CR
【答案】A
【分析】利用平面向量的概念、平面向量的加法、减法、数乘运算的几何意义,便可解决问题.
【详解】解:在如图所示的正五角星中,以A,B,C,D,E为顶点的多边形为正五边形,且红=避二1.
AT2
uurmiuiruuruir/?।iuir
在A中,BP-TS=TE-TS=SE=-——RS,故A正确;
2
uumuiruiruiruu/:1uir
在B中,CQ+TP=PA+TP=TA=^—ST,故B错误;
在c中,ES-AP=RC-QC=RQ=^1DR=^-QB,故C错误;
在D中,AT+BQ=SD+RD,避二!■而=丽=丽-而,
一2
^AT+BQ=^^CR,则而=0,不合题意,故D错误.
故选:A.
3.(2023・全国•高三专题练习)数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角
形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,该直线被称
为三角形的欧拉线,设点QG,4分别为任意AABC的外心、重心、垂心,则下列各式一定正确的是()
A.OG^-OHB.OH^-GH
23
C.同=必迈D,旃=2一+两
33
【答案】D
【分析】根据三点共线和长度关系可知AB正误;利用向量的线性运算可表示出前,就,知CD正误.
,,—.1—.
依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,;.OG=—,
2
:.OG=-OH,OH=-GH,A错误,B错误;
32
AG=AO+OG=AO+-OH=Ad+-(AH-Ad)=^^^-,C错误;
33、,3
BG=BO+OG=BO+-OH=BO+-(BH-BO]=--------------,D正确.
33、,3
故选:D.
4.(2021秋・山东威海•高三统考期中)向量旋转具有反映点与点之间特殊对应关系的特征,在电子信息传导
方面有重要应用.平面向量旋转公式在中学数学中用于求旋转相关点的轨迹方程具有明显优势,已知对任
意平面向量Afi=(x,y),把通绕其起点沿逆时针方向旋转夕角得到向量衣=(xcose-ysin9,xsine+ycos。),
叫做把点B绕点A沿逆时针方向旋转。角得到点P,已知平面内点4(1,2),点8。-0,2+20),点B绕点
n
A沿顺时针方向旋转:后得到点尸,则点尸的坐标为()
4
A.(1,3)B.(-3,1)C.(2,5)D.(-2,3)
【答案】C
【分析】表示出向量通后,根据平面向量旋转公式可求得行,由此可求得P点坐标.
【详解】•.•A(l,2),B(1-A/2,2+2A/2),.•.油=卜点,2忘),
,・•点B绕点A沿顺时针方向旋转与等价于点3绕点A沿逆时针方向旋转号,
44
AP=[-0cos1-20sin与,-0sin1+272cos=(1,3),/.P(2,5),
故选:C.
5.(2022.高一课时练习)我校八角形校徽由两个正方形叠加变形而成,喻意“方方正正做人”,又寄托南开
人”面向四面八方,胸怀博大,广纳新知,锐意进取”之精神,如图,在抽象自“南开校徽”的多边形中,已知
其由一个正方形与以该正方形中心为中心逆时针旋转45。后的正方形组合而成,已知向量加M则向量2(
A.2n+3kB.(2+V^")几+3左
C.(2++(2+D.(1+V5)〃+(2+A/^)E
【答案】D
【分析】根据对称性可得线段的长度关系以及点共线,再由向量的加法法则可求解.
【详解】根据题意可得问=忖,
由该图形是由正方形中心为中心逆时针旋转45。后与原正方形组合而成,如图
由对称性可得\AB\=\BC\=\CD\=陷=侬=\QF\,
\CE\=\EF\=\FG\=y/2\AB\=V2|«|
由对称性可得点B,C,E,0共线,点Q,RG共线.
所以苑=阮+区+匹=(2+无)后,QG=QF=FG=(l+^n
所以%=而+的=(2+夜)》+(1+0)元
故选:D
G
6.(2022春•黑龙江黑河・高一嫩江市高级中学校联考阶段练习)下面图1是某晶体的阴阳离子单层排列的平
面示意图.其阴离子排列如图2所示,图2中圆的半径均为1,且相邻的圆都相切,A、8、C、。是其中
四个圆的圆心,则丽.①=().
【答案】B
【分析】如图所示,取[、区为一组基底的基向量,其中贰1=1且]、晟的夹角为60。,将荏和前化
为基向量,利用平面向量的数量积的运算律可得结果.
【详解】如图所示,建立以耳、02为一组基底的基向量,
其中|冢|<£|=1且录、1的夹角为60。,
/.AB=2e1+4e2,CD=4St+2g,,
旗•历=(2耳+4瓦)―(4耳+2瓦)=8。;+8胃+20及⑥=8+8+20xlxlx;=26.
故选:B.
7.(2022.全国•高三专题练习)伟大的法国数学家笛卡儿(Descartesl596〜1650)创立了直角坐标系.他用平
面上的一点到两条固定直线的距离来确定这个点的位置,用坐标来描述空间上的点,因此直角坐标系又被
称为“笛卡尔系”;直角坐标系的引入,将诸多的几何学的问题归结成代数形式的问题,大大降低了问题的难
度,而直角坐标系,在平面向量中也有着重要的作用;在正三角形ABC中,。是线段上的点,AB=3,
BD=2,则须.亚=().
A.3B.6C.9D.12
【答案】B
【解析】以通、衣为一组基底,表示出诟,再根据向量的数量积的定义及运算律计算可得;
【详解】解:在正三角形ABC中,。是线段BC上的点,AB=3,BD=2,所以
AI)=AB+-BC=AB+-(AC-AB)=-AB+-AC
33、'33
AB-AD=AB-I-AB+-AC|=-AB2+-AC-AB=ix32+-x3x3xl=6
3)33332
故选:B
A
BDC
8.(2021春・福建福州•高一校考阶段练习)“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数
学家商高曾经和周公讨论过“勾3股4弦5”的问题,毕达哥拉斯发现勾股定理早了500多年,如图,在矩形
ABCD^,AABC满足“勾3股4弦5”,且钻=3,E为AD上一点,AC.若屁=几丽+〃肥,贝U彳+〃
的值为()
A-V
B-1♦D.1
【答案】B
—►/9
【分析】建立平面直角坐标系,进而利用向量的坐标表示,设BE=(a,3),由衣.诙=0可得再由
BA=A,BE+!LIAC,利用坐标表示建立方程组求解即可.
【详解】由题意建立如图所示直角坐标系
因为AB=3,3c=4,则3(0,0),A(0,3),C(4,0),丽=(0,3),而=(4,—3),设丽=(a,3),因为3E_LAC,
所以•丽=4a-9=0,解得。=].由丽=2而+〃而,得(。,3)=4(:,3)+〃(4,-3),所以《4'+4"-C
4''[32-3//=3,
解得
7
所以几+〃=~,
故选:B.
【点睛】本题主要考查了向量的坐标运算及向量垂直的坐标表示,属于基础题.
9.(2022春・北京・高一北京市第二十五中学校考期中)据《九章算术》记载,商高是我国西周时期的数学家,
曾经和周公讨论过“勾3股4弦5”的问题,比毕达哥拉斯早500年.如图,现有AABC满足“勾3股4弦5”,
其中AC=3,3c=4,点。是CB延长线上的一点,则/.而=()
A.3B.4C.9D.不能确定
【答案】C
【解析】根据AABC满足“勾3股4弦5”可得AC1.CB,再利用平面向量的线性运算以及两个垂直向量的数
量积为0,可求得结果.
【详解】因为AC=3,CB=4,AB=5,所以
所以AC_LCB,所以近S丽=0,所以".诙=0,
所以.而=衣.(衣+前)=*2+蔗•①=9+0=9.
故选:C
【点睛】本题考查了勾股定理,考查了平面向量的线性运算,考查了两个垂直向量的数量积为0,属于基础
题.
10.(2022•全国•高三校联考阶段练习)黄金分割[Go/de”Sec〃o〃)是一种数学上的比例关系.黄金分割具有
严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.应用时一般取0.618,就像圆周率在应用时取3.14
一样.高雅的艺术殿堂里,自然也留下了黄金数的足迹.人们还发现,一些名画、雕塑、摄影作品的主题,大
多在画面的Q618处.艺术家们认为弦乐器的琴马放在琴弦的0.618处,能使琴声更加柔和甜美.黄金矩形
{GoldenRectangle)的长宽之比为黄金分割率,换言之,矩形的长边为短边1.618倍.黄金分割率和黄金矩形
能够给画面带来美感,令人愉悦.在很多艺术品以及大自然中都能找到它.希腊雅典的巴特农神庙就是一个很
好的例子,达・芬奇的《维特鲁威人》符合黄金矩形.《蒙娜丽莎》中蒙娜丽莎的脸也符合黄金矩形,《最后
的晚餐》同样也应用了该比例布局.2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金
分割.所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于
该部分之比,黄金分割比为逐二0.618.其实有关“黄金分割”,我国也有记载,虽没有古希腊的早,但它
2
是我国数学家独立创造的.如图,在矩形A5CD中,AC,相交于点。,BF1AC,DH.LAC,AE±BD,
CG1BD,而=避二1而,则乔=(
2
【答案】D
【分析】利用平面向量的线性运算和平面向量基本定理即可求解.
【详解】解:•.•丽丽,显然3E=DG,BO=OD^-BD,
22
所以布=(2一去』也土萼而,
<7-
5-5/510
2222
.•.丽=三如丽+好旃,
25
故选:D.
11.(2022秋•宁夏银川•高三银川一中校考阶段练习)圆是中华民族传统文化的形态象征,象征着“圆满”和“饱
满“,是自古以和为贵的中国人所崇拜的图腾.如图,是圆0的一条直径,且|AB|=4.C,。是圆。上
的任意两点,1=2,点P在线段8上,则西•丽的取值范围是()
B
A.[-1,2]B.[>/3,2]C.[3,4]D.[-1,0]
【答案】D
【分析】设。为圆心,连接。P,根据数量积的运算律得到百•丽=|而『-4,根据点P在线段8上,即
可求出I而I的取值范围,即可得解.
【详解】解:如图,。为圆心,连接。尸,
则胡・丽=(用+两)•匹+函=反f+协丽+协两+诉9=方+协胸+的一加=|PO|2-4-
因为点尸在线段8上且\CD\=2,则圆心到直线CD的距离d=在二产=6,
所以及卡力|2,
所以3蒯的『4,则-喇府『-40,
即丽•丽的取值范围是[T,0L
故选:D.
12.(2023•全国•高三专题练习)下如图是世界最高桥——贵州北盘江斜拉桥.下如图是根据下如图作的简易
侧视图(为便于计算,侧视图与实物有区别).在侧视图中,斜拉杆加,PB,PC,的一端P在垂直于水
平面的塔柱上,另一端43,C,。与塔柱上的点。都在桥面同一侧的水平直线上.已知AB=8m,3O=16m,
尸O=12m,而.京=0.根据物理学知识得I■(苏+而)+;(定+而)=2而,贝i]CD=()
塔M
A.28mB.20mC.31mD.22m
【答案】D
【分析】由丽.定=0,得PB工PC,则可得尸O'OBOC,可求得OC=9m,M,N分别为AB,。。的
中点,则由已知可得。为的中点,再结合已知的数据可求得结果
【详解】因为方.左=0,所以PB_LPC,
因为尸O13C,所以aPOCsABOP,
所以P胃O=左OC,所以PO'OBOC,
OBPO
因为3O=16m,PO=12m,
所以0C=9m,
设M,N分别为A氏8的中点,
因为;(西+旃)+;(定+两)=2的,
所以加+丽=2丽,
所以。为MN的中点,
因为AB=8m,3O=16m,所以QW=20m,
所以ON=20m,
所以OV=ON—OC=20—9=llm,
所以CD=2OV=22m
故选:D
fi,v
13.(2022•全国•高三专题练习)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称为“赵
爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示,若次=»,DC=n,
AF=^AE,则需=()
【答案】B
【分析】由已知可得出=利用平面向量的线性运算得出=再结合平面的基
本定理可得结果.
【详解]由题意得加=§丽=§(近一通)=§荏一jxy亚=§砺一而+现),
13--2―-4----6—■4--4—6-
所以一DE=—ABAD,即DE=—OC+—=—根+—",
93913131313
故选:B.
14.(2022春•江苏南京•高三金陵中学校考阶段练习)2021年第十届中国花卉博览会兴办在即,其中,以“蝶
恋花”为造型的世纪馆引人注目(如图①),而美妙的蝴蝶轮变不仅带来生活中的赏心悦目,也展示了极致
的数学美学世界.数学家曾借助三角函数得到了蝴蝶曲线的图像,探究如下:如图②,平面上有两定点。,
A,两动点B,Q,>|OA|=|OB|=I,函绕点。逆时针旋转到丽所形成的角记为6.设函数
l,x>0
〃e)=4-sign⑻-sin5。,(一万万),其中,sign(x)=<0,尤=0,令p=于⑼,作丽砺随着6的
-l,x<0
变化,就得到了。的轨迹,其形似“蝴蝶”.则以下4幅图中,点。的轨迹(考虑糊蝶的朝向)最有可能为()
【答案】B
【分析】考虑特殊值,用排除法,取。=0,土凡确定质的的位置,排除错误选项得结论.
【详解】先考虑与次共线的蝴蝶身方向,令6=0,土方,丽=-4砺=4次要满足,故排除4,C;
TT
再考虑与次垂直的方向,令8=5,函=-砺要满足,故排除
故选:B.
15.(2023秋•云南・高三云南师大附中校考阶段练习)窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的
汉族传统民间艺术之一,它历史珞久,风格独特,深受国内外人士所喜爱.如图甲是一个正八边形窗花隔
断,图乙是从窗花图中抽象出的几何图形示意图.已知正八边形ABCDEFGH的边长为2及,又是正八边
形ABC-DEFG"边上任意一点,则应限诙的最大值为()
A.30+45历B.D.24+16应
【答案】D
【分析】取AB的中点。,连接M。,通过转化得面.碗=而2-2,则转化为求I丽的最大值,由图得当
点M与点尸或点E重合时,I标I取得最大值,计算I屈I最值即可.
【详解】如图,取A8的中点。连接MO,连接3E,0E,分别过点C,点。作BE的垂线,垂足分别为//,
所以必砺=(砺+弧・颂5+函=须5+两.(而_函)=破、而=MO2-2,
当点M与点尸或点E重合时,|屈|取得最大值,
易得四边形CD〃为矩形,ABC7,ADEJ为等腰直角三角形,则〃=2后,
BI=EJ=2,则2E=4+20,B0=6,,
MO取得最大值为BO2+BE2=+(4+2应了=26+16近,
所以凉•赤的最大值为24+16&,
故选:D.
二、多选题
16.(2022・全国•高三专题练习)古代典籍《周易》中的“八卦”思想在我国建筑中有一定影响.如图是受“八
圭卜''的启示,设计的正八边形的八角窗,若。是正八边形ABCDEFGH的中心,且|通|=1,则()
FE
A.通■与方能构成一组基底B.ODOF=0
C.OA+OC=yj2OBD.ACCD=^
【答案】BCD
【分析】连接3G,CF,由正八边形的性质可知,AH//BG,CF//BG,可判断选项A;从而可得
1兀
ZDOF=-x2n=~,可判断选项B;连结AC交于点M,可判断选项C;先判断出AB_LCD,结合向
42
量的加法和数量积的运算性质可判断选项D.
【详解】连接BG,CF,由正八边形的性质可知,AH//BG,CF//BG,
所以4/〃C尸,所以A"与C/是共线向量,所以质与方不能构成一组基底,A项错误;
17T
XZDOF=-x27t=-,所以前,。几所以历.丽=0,B项正确;
42
由上过程可知砺_1_4,连结AC交于点
在直角三角形。4c中,M为AC的中点,
贝UOA+OC=2OM,
又两|二由|=当两=与函,
222
所以两+双=及赤,C项正确;
1
又正八边形的每一个内角为:-(8-2)x7t--,
8'4
jr
延长OC,AB,相交于点N,则NC3N=ZBCN=:,
4
TT
所以/BNC=—,故⑷3,CD,
2
所以乐.历=(通+而)•丽=丽•函+宓•)=|初|cos(7t-网)=亚,D项正确.
42
故选:BCD.
17.(2022春・广东揭阳•高一校考阶段练习)“圆哥定理”是平面几何中关于圆的一个重要定理,它包含三个
结论,其中一个是相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.如图,已知圆。的
半径为2,点P是圆。内的定点,且。尸=0,弦AC、8。均过点P,则下列说法正确的是()
A.而.无为定值B.况.而的取值范围是[-2,0]
C.当时,荏.历为定值D.罔的最大值为12
【答案】AC
【分析】根据题设中的圆幕定理可判断AC的正误,取AC的中点为M,连接OM,利用向量的线性运算可
判断B的正误,根据直径的大小可判断D的正误.
【详解】
如图,设直线P。与圆。于E,F.
则而.无=-|P^|PC|=-\EP\\PF\=-(|OE|-|PO|)(|OE|+|PO|)=|PO|2-|EO|2=-2,
故A正确.
取AC的中点为连接则
OA-OC=(OM+MAy(OM+MC^=OM2-MC1
--------,2(-------2\------Q.
=OM-4-OM\=2OM-4,
ffi]0<W2<|C»P|2=2,故函.元的取值范围是[Y,0],故B错误.
当AC130时,ABCZ5=(AP+PB)(CP+PD)=APCP+PBPD
=-|A?||CP|-|PB||PD|=-2\EP\\PF\=-4,故C正确.
因为|明44,|现44,故“,叫V16,故D错误.
故选:AC
18.(2021春•江苏常州•高一常州市北郊高级中学校考阶段练习)(多选)古代中国的太极八卦图是以同圆内
的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有阴眼,阴鱼的头部有个阳眼,表示万物都在相互转化,
互相渗透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律.图2(正八
边形ABCDEFGH)是由图1(八卦模型图)抽象而得到,并建立如下平面直角坐标系,设。4=1.则下述四
个结论,正确结论是()
图1图2
A.以直线由为终边的角的集合可以表示为卜£=『2匕获Z
JT
B.在以点。为圆心、Q4为半径的圆中,弦所对的弧长为:
4
C.丽.历=正
2
D.而=(-6,-吟
【答案】BD
【分析】根据终边相同的角的定义可判断A;利用扇形的弧长公式可判断B;利用平面向量数量积的定义可
判断C;利用平面向量的坐标运算可判断D.
【详解】对于A,以直线而为终边的角的集合可以表示为=±+左ez1,故A错误;
TTJTTT
对于B,ZAOB=~,以点。为圆心、为半径的圆的弦A3所对的弧长为/==故B正确;
444
对于C,由平面向量数量积的定义可得丽•诟=|词.|因3,=-白,故C错误;
对于D,易知点.•.法=卜后厂友),故D正确.
故选:BD.
【点睛】关键点点睛:本题以数学文化为背景,解题的关键是熟悉终边相同的角的集合、扇形的弧长、平
面向量数量积的定义以及平面向量的坐标运算,考查计算能力,属于基础题.
19.(2022・甘肃张掖.高台县第一中学校考模拟预测)八卦是中国文化的基本哲学概念,如图1是八卦模型
图,其平面图形记为图2中的正八边形ABCDEFGH,其中Q4=l,则下列结论正确的有()
A.OA.OD=-^-
OB+OH=-y/2OE
AHHO=BCBO
向量诙在向量荏上的投影向量为-与§
【答案】ABD
【分析】直接利用向量的数量积的应用,向量的夹角的应用结合图像求出结果,逐一分析各个选项即可得
出答案.
【详解】解:图2中的正八边形ABCDEFGH,其中|。4|=1,
对于A:两•次J=lxlxcos^=-交,故A正确;
42
对于8:无+丽=血西=-0区,故B正确;
对于C:因为|丽=|南,质|=|的,(网=网)号,(BC-BO)=y,则
571
汨协=画.匹cos(而,网=网.西cos——
8
BC-BO=|Bc|.|Bo|cos(BC,BO)=|B^.|B^cosy,所以丽.而工前屈,故C错误;
对于D:因为洗'=第,所以向量7正在向量项上的投影向量即为正在通向量上的投影向量
i-j-rvi3>TTAB>/2-=-
\AH\C0S~^'\^=~~AB-故D正确.
故选:ABD.
20.(2020春・广东东莞•高一校考阶段练习)数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次
位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定
理则被称为欧拉线定理.设点0、G、“分别是金。的外心、重心、垂心,且M为BC的中点,则()
A.GA+GB+GC=6B.AB+AC=2HM-4MO
C.AH=3OMD.|OX|=|OB|=|OC|
【答案】ABD
【解析】向量的线性运算结果仍为向量可判断选项A;由GO=^HG可得HG=:H0,利用向量的线性运
^AB+AC=2AM=6GM=6(HM-HG),再结合加二加+而集合判断选项B;利用
=而-不存=2两"-2而=2时故选项C不正确,利用外心的性质可判断选项D,即可得正确选项.
【详解】
因为G是AABC的重心,。是AABC的外心,H是AABC的垂心,
___1__.
且重心到外心的距离是重心到垂心距离的一半,所以GO=-HG,
2
对于选项A:因为G是AASC的重心,M为的中点,所以才小=2而彳,
又因为屈+前=2前,所以而+觉=而,BPGA+GB+GC=6,故选项A正确;
对于选项B:因为G是AABC的重心,/为BC的中点,所以而=2的,
,1__.__►2__►
AM=3GM»因为GO=,HG,所以=
AB+AC=2AM=6GM=6(ffi?-HG)=6^W-|HO^
=6HM-4HO=6HM-4iHM+MO)=2HM-4MO,即存+前=2丽-4跖,故选项B正确;
对于选项C:Ml=^G-HG=2GM-2GO=2OM,故选项C不正确;
对于选项D:设点。是AABC的外心,所以点。到三个顶点距离相等,BR|OA|=|OB|=|OC|,故选项D正确;
故选:ABD.
【点睛】关键点点睛:本题解题的关键是利用已知条件GO=]"G得HG=1”。,利用向量的线性运算结
合不存=2前可得出向量间的关系.
21.(2021・全国•高三专题练习)奔驰定理:己知。是AABC内的一点,ABOC,AAOC,AAOB的面积分别
为S”SB,Sc,则名•砺+%・砺+7・。己=0.“奔驰定理”是平面向量中一个非常优美的结论,因为这个
定理对应的图形与“奔驰”轿车(Mercedesbenz)的/ogo很相似,故形象地称其为“奔驰定理”.若。、P是锐角
△ABC内的点,A、B、C是AABC的三个内角,且满足中+而+无=3回,OAOB=OBOC=OCOA^
则()
Aqqs-4•9•3
4.2&PAB**APBC,
B.ZA+ZBOC=n
C.|OA|:|(?B|:|oc|=cosA:cosB:cosC
D.tanAOA+tanBOB+tanCOC=6
【答案】ABCD
【分析】可+而+无=§5变形后表示为丽=-§西定,再由奔驰定理得出向量而,而,正的关系,
利用平面向量基本定理判断A,利用数量积的运算,变形后证明。是“1BC的重心,由平面几何知识判断B,
利用数量积的定义表示已知数量积的等式,结合选项B的结论可证明C,求出的面
积,利用选项B的结论转化,再利用选项C的结论可得面积比,然后结合奔驰定理可判断D.
【详解】因为西+而+定=;西,所以西+而+定=g(而一定),即:西+而+?配=小,所以
—►2—►4-.
PB=__PA_—PC,
33
又由奔驰定理S^PBCPA+S^CAPB+S^PABPC=6^~PB=-^™cpA-1^PC,
^APCA^APCA
因为西,正不共线,所以-学也;-;-14皿=-:,
、4PCAJ^APCAJ
所以:S^pBC-1^APCA—4:2:3,A正确;
延长AO,BO,CO分别与对边交于点2瓦尸,如图,
由力・砺=砺・文得无•(次一反")=砺m=0,所以O3_LAC,同理。C_L4?,Q4_L3C,所以。是
AABC的垂心,
所以四边形AEO77中/区4C+/EO9=乃,/EOF=NBOC,所以/A+/BOC=%,B正确;
由见砺=砺.诙=而/得网|词cos/AOB=|网因cos/2OC=|回网cos/AOC,
所以:|(?B|:loci=cosZ.BOC:cosZAOC:cosZAOB,
由选项B得cosZBOC=-cosA,cosZAOC=—cosB,cosZAOB=-cosC,
VJ.|OA|:|^s|:|oc|=cosA:cosB:cosC,C正确;
由上讨论知,
SA0BC=||OB||OC|sinZBOC=||OB||OC|sinA,
SMAC=||OA||OC|sinZAOC=||OA||OC|sinB
5AoM=g|OA||O邸inZAO2=JoA||O邸in/C,
_sinAsinBsinC
:
所以XOBC:^AOAC^A0A5=
\A0\'\OB\'\0C\'
又由选项C:|OA|:|(?B|:|oc|=cosA:cosB:cosC,
sinAsinBsinC
得S^OBC*S/\OAC'S40AB=tanA:tanB:tanC,
cosAcosBsinC
由奔驰定理:SA-次+SB•砺+Sc・3=。得tanA•)+tanB•砺+tanC•近=。,D正确.
故选:ABCD.
【点睛】本题考查平面向量基本定理的应用,考查学生的创新能力,理
解新知识、应用新知识的能力.解题关键一是利用平面向量基本定理知用基底表示平面上任一向量的方法
是唯一的,由此可得等量关系,二是利用数量积的运算得出。是三角形的垂心,由此利用平面几何知识得
出角的关系,再利用三角函数知识进行推导得出相应结论.
三、填空题
22.(2020秋•四川成都•高一成都七中校考阶段练习)早在两千多年前,我国首部数学专著《九章算术》中,
就提出了宛田(扇形面积)的计算方法:“以径乘周,四而一(直径与弧长乘积的四分之一).已知扇形的弧
长为2小面积为6肛设"+西=2M,则实数Z等于.
【答案】百
【分析】先利用扇形的面积公式及弧长公式求出半径和圆心角,再利用向量数量的运算求出伊+得和网,
进而可得实数彳的值.
【详解】解:如图
由扇形面积公式可得6万=;2%/,得r=6,
2
所以扇形圆心角a=^=q,则440B为等边三角形,贝U网=6,
X|OA+=4OA+2OAOB+OB=^62+2x6x6x1+62=64,
所以俘+词=百网,即人行
故答案为:6
【点睛】本题考查本题考查扇形的面积公式及弧长公式的应用,考查向量模的运算,是基础题.
23.(2022秋・四川内江.高三四川省隆昌市第一中学校考开学考试)《易经》是阐述天地世间关于万象变化的
古老经典,如图所示的是《易经》中记载的几何图形一八卦图.图中正八边形代表八卦,中间的圆代表阴
阳太极图,其余八块面积相等的图形代表八卦图.已知正八边形MCDEFGH的边长为2,P是正八边形
ABCDEFGH所在平面内的一点,则丽.丽的最小值为.
【答案】-1
【分析】设M为48的中点,可得出百.而=可/_1,即可求得⑸.而的最小值.
【详解】设/为A8的中点,
------►k/►*\/*»\/**\/**\►2*2
PAPB=\PM+MA^-^PM+MB^=(^PM+MAj\PM-MAj=PM-MA=PM
当且仅当点尸为线段A3的中点时,等号成立,故丽.丽的最小值为-L
故答案为:-1.
24.(2022秋•全国•高二校联考开学考试)赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为
《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以直角三角形的斜边为边得到的正方形).
类比“赵爽弦图”,构造如图所示的图形,它是由三个全等的三角形与中间的一个小等边三角形拼成的一个大
等边三角形,且。尸=2AP,点/为A3的中点,点P是QEF内(含边界)一点,SLMP=XMD-MB,
则A的最大值为.
【答案】2
【分析】由题设砺=-蓝A,易得入痴>=痴+而=希-赤=q,过4作的平行线交£»于点。,即
可判断P与。重合时4的值最大,进而求最大值.
【详解】由标=2砺一通得:MP+MB=AMD,
又M为A3的中点,所以砺=-丽5,
所以赤-赤=丽=彳而,过A作必)的平行线交ED于点。
当尸与。重合时,入的值最大.
因为M为的中点,且MD〃AQ,
所以。为8。的中点,此时而=2砺,
所以彳的最大值为2.
25.(2022•全国•高三专题练习)中国文化博大精深,“八卦”用深邃的哲理解释自然、社会现象.如图(1)
是八卦模型图,将共简化成图(2)的正八边形ABCD石FGH,若AB=1,贝!]*.而=______________
卜'E
辍―
、二AB
图⑴图⑵
【答案】亚+2##2+0
【分析】在四。3中由余弦定理求出进而可得AE,AC,再由数量积的定义求解即可
360°
【详解】在^403中,设Q4=O3=x,ZAOB=—=45°,
8
贝#+/一2dcos45o=l,所以尤2="正,
2
又ZAOB=ZBOC=45°,
所以ZAOC=90°,ZOAC=ZOCA=45°,
所以AE=2x==血x也+,,AC=JOA2+OC2==^2+\/2,
所以前.通二时.词cos45。-,2+血x及x,2+0x立
=2+72
故答案为:2+五
E
AB
26.(2022春・福建泉州•高一校考期中)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次
位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理
被称为欧拉线定理.已知AABC的外心为。,重心为G,垂心为H,M为BC中点,且AB=5,AC=4,则
下列各式正确的有.
®AGBC=-3®AOBC=-6
®OH=OA+OB+OC®AB+AC^4OM+2HM
【答案】①③④
【分析】利用三角形外心、重心、垂心的性质,结合平面向量的线性运算法则以及平面向量的数量积的定
义及运算律逐项分析即可求出结果.
__.2►1.
【详解】对于①,AABC重心为G,^AG=-AM=-(AB+AC),
-.---►1---►--------»---»1----2,------2.1
故AG-BC=§(A3+AC)(AC-A8)=§(AC-AB)=-(16-25)--3,故①正确;
对于②,"LBC外心为。,过三角形ABC的外心。分别作AB、AC的垂线,垂足为E,易知。、E分别
是AB、AC的中点,AO-AB——AB——,AO-AC=—AC=8
222
—.—.—.―.—.259
AOBC=AO(AC-AB)=S--=--,故②错误;
8MC
对于③,由欧拉线定理得2加=丽,BPOH=3OG>又有G4+屈+元=0,
^OA+OB+OC=(OG+GA)+(OG+GB)+(OG+GC)=3OG+GA+GB+GC=3OG,OH=OA+OB+OC,
故③正确;
________________2__.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物联网技术研发合作协议
- 防灾减灾安全施工合同范本
- 工业园区警示牌安装协议
- 船舶公司网络布线服务合同
- 住宅小区车位买卖合同
- 徐州市电竞馆租赁合同
- 情景喜剧编剧创作合同
- 美容师试用协议模板
- 2024版零售业招商居间合作合同版
- 中交与绿城合作协议签约
- 常见化学专业词汇英文翻译
- 快递驿站承包协议书
- 内科护理学智慧树知到期末考试答案章节答案2024年荆门职业学院
- (高清版)JTGT 5190-2019 农村公路养护技术规范
- 基于视觉果蔬识别的称重系统设计
- 体育初中学生学情分析总结报告
- 2024氢气长管拖车安全使用技术规范
- 部编版语文中考必背文言文7-9年级
- 《中外历史纲要(上)》期末专题复习提纲
- TCALC 003-2023 手术室患者人文关怀管理规范
- 初中学生交通安全教育教案
评论
0/150
提交评论