版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年辽宁省高二数学上学期11月期中调研试卷命题范围:立体几何、解析几何双曲线及之前 试卷难度:提升一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a,b为两条直线,,为两个平面,且满足,,,,则“与异面”是“直线与l相交”的 (
)A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件2.若方程表示双曲线,则实数的取值范围是(
)A. B. C. D.或3.两平行直线与之间的距离为 (
)A. B. C. D.4.设AB是椭圆()的长轴,若把AB一百等分,过每个分点作AB的垂线,交椭圆的上半部分于P1、P2、…、P99,F1为椭圆的左焦点,则的值是 (
)A. B. C. D.5.已知A为直线2x+y−4=0上的动点,B为圆(x+1)2+y2=1上的动点,点C(1,0),则2AB+A.45 B.35 C.25在四棱锥中,平面,二面角的大小为,若点均在球的表面上,则球的表面积最小值为(
)A. B. C. D.7.已知曲线:是双纽线,则下列结论正确的是(
)A.曲线的图象不关于原点对称B.曲线经过4个整点(横、纵坐标均为整数的点)C.若直线与曲线只有一个交点,则实数的取值范围为D.曲线上任意一点到坐标原点的距离都不超过38.已知平面上两定点、,则所有满足(且)的点的轨迹是一个圆心在上,半径为的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称作阿氏圆.已知棱长为3的正方体表面上动点满足,则点的轨迹长度为(
)A. B. C. D.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法命题正确的是(
)A.已知,,则在上的投影向量为B.若直线l的方向向量为,平面的法向量为,则C.已知三棱锥,点P为平面ABC上的一点,且,则m−n=12D.若向量,(x,y,z都是不共线的非零向量)则称在基底下的坐标为,若在单位正交基底下的坐标为,则在基底下的坐标为10.已知,是双曲线E:的左、右焦点,过作倾斜角为的直线分别交y轴、双曲线右支于点、点,且,下列判断正确的是(
)A. B.的离心率等于C.双曲线渐近线的方程为 D.的内切圆半径是11.在直三棱柱中,,,M是的中点,N是的中点,点P在线段上,点Q是线段上靠近M的三等分点,R是线段的中点,若面,则(
)A. B.P为的中点C.三棱锥的体积为 D.三棱锥的外接球表面积为三、填空题:本题共3小题,每小题5分,共15分.12.已知圆C1:x2+y2=16与圆C2:x2+y2+kx+y+m−16=0交于A,B13.如图,已知四边形ABCD是菱形,,点E为AB的中点,把沿DE折起,使点A到达点P的位置,且平面平面BCDE,则异面直线PD与BC所成角的余弦值为.14.倾斜角为锐角的直线l经过双曲线C:x23m2−y2m2=1(m>0)的左焦点F1,分别交双曲线的两条渐近线于A,B两点,若线段四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)如图所示,三棱柱中,侧棱垂直于底面,,,点分别为的中点.(1)求证:;(2)求点到平面的距离.16.(本小题满分15分)已知圆.(1)直线截圆的弦长为,求的值.(2)记圆与、轴的正半轴分别交于两点,动点满足,问:动点的轨迹与圆是否有两个公共点?若有,求出公共弦长;若没有,说明理由.17.(本小题满分15分)如图,四棱锥中,,,,,平面平面,且平面,平面平面.(1)求四棱锥的体积;(2)设Q为上一点,若,求二面角的大小.18.(本小题满分17分)已知椭圆的右焦点为,点在上,且轴,过点且与椭圆有且只有一个公共点的直线与轴交于点.(1)求椭圆的方程;(2)点是椭圆C上异于的一点,且三角形的面积为,求直线的方程;(3)过点的直线交椭圆于,两点(在的左侧),若为线段的中点,直线交直线于点,为线段的中点,求线段的最大值.19.(本小题满分17分)在空间直角坐标系中,已知向量,点.若直线以为方向向量且经过点,则直线的标准式方程可表示为;若平面以为法向量且经过点,则平面的点法式方程可表示为,一般式方程可表示为.(1)若平面,平面,直线为平面和平面的交线,求直线的单位方向向量(写出一个即可);(2)若三棱柱的三个侧面所在平面分别记为,其中平面经过点,,平面,平面,求实数m的值;(3)若集合,记集合中所有点构成的几何体为,求几何体的体积和相邻两个面(有公共棱)所成二面角的大小.参考答案命题范围:立体几何、解析几何双曲线及之前一、单选题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.题号12345678答案CBCDCADB二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.题号91011答案CDACDACD12.±2. 13.. 14.77.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(1)证明见解析; (2).16.(1); (2)有,公共弦长为.17.(1)6; (2).18.(1); (2); (3)2.19.(1); (2); (3)体积为128,相邻两个面(有公共棱)所成二面角为.辽宁省普通高中2024-2025学年度上学期11月期中调研试题(2)高二数学(教师版)命题范围:立体几何、解析几何双曲线及之前 试卷难度:提升注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。答非选择题时,将答案写在答题卡上。写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a,b为两条直线,,为两个平面,且满足,,,,则“与异面”是“直线与l相交”的(
)A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】C【分析】根据空间中线、面关系结合充分、必要条件分析判断.【详解】当“与异面”,若直线与l不相交,由于,则,又,则,这与和异面相矛盾,故直线与l相交,故“与异面”是“直线与l相交”的充分条件;当“直线与l相交”,若与不异面,则与平行或相交,若与平行,又,则,这与直线和l相交相矛盾;若与相交,设,则且,得,即A为直线的公共点,这与相矛盾;综上所述:与异面,即“与异面”是“直线与l相交”的必要条件;所以“与异面”是“直线与l相交”的充分必要条件.故选:C.2.若方程表示双曲线,则实数的取值范围是(
)A. B.C. D.或【答案】B【知识点】根据方程表示双曲线求参数的范围【分析】根据双曲线方程的特征,列式求解.【详解】若方程表示双曲线,则,得.故选:B3.两平行直线与之间的距离为(
)A. B. C. D.【答案】C【分析】先由两直线平行求出,再代入两平行直线间距离公式求解即可;【详解】由题意知,所以,则化为,所以两平行直线与之间的距离为.故选:C.4.设AB是椭圆()的长轴,若把AB一百等分,过每个分点作AB的垂线,交椭圆的上半部分于P1、P2、…、P99,F1为椭圆的左焦点,则的值是(
)A. B. C. D.【答案】D【分析】根据椭圆的定义,写出,可求出的和,又根据关于纵轴成对称分布,得到结果.【详解】设椭圆右焦点为F2,由椭圆的定义知,2,,,.由题意知,,,关于轴成对称分布,.又,故所求的值为.故选:D.5.已知A为直线2x+y−4=0上的动点,B为圆(x+1)2+y2=1上的动点,点C(1,0)A.45 B.35 C.25【答案】C【知识点】求点到直线的距离、定点到圆上点的最值(范围)、圆上点到定直线(图形)上的最值(范围)【分析】设Dx0,0,Bx1,y1,不妨令BC=2【详解】设Dx0,0则x1整理得3x1+1又3x1+1则2x0+1所以存在定点D−12要使2AB+BC则A,B,D三点共线,且DA垂直于直线2x+y−4=0时取得最小值,如图所示,所以2AB+BC故选:C.【点睛】关键点点睛:设Dx0,0,Bx16.在四棱锥中,平面,二面角的大小为,若点均在球的表面上,则球的表面积最小值为(
)A. B. C. D.【答案】A【分析】根据题设易得是四边形外接圆的直径,中点为外接球球心,令且,求得外接球半径关于的表达式,求其最小值,即可求表面积最小值.【详解】由题设,,,,在一个圆上,故,又,所以,即,故是四边形外接圆的直径,由平面,,,平面,则,,,由,,平面,则平面,平面,则,由,,平面,则平面,平面,则,故,,都是以为斜边的直角三角形,故中点为外接球球心,且为二面角的平面角,故,因为,,令且,则,,故,所以外接球半径,当时,,此时球的表面积的最小值为.故选:A7.已知曲线:是双纽线,则下列结论正确的是(
)A.曲线的图象不关于原点对称B.曲线经过4个整点(横、纵坐标均为整数的点)C.若直线与曲线只有一个交点,则实数的取值范围为D.曲线上任意一点到坐标原点的距离都不超过3【答案】D【分析】将代入方程,可判断A;结合方程,求解整点坐标,可判断B;联立方程组,结合其解唯一求出k的范围,判断C;结合方程以及距离公式可判断D.【详解】对于A,结合曲线:,将代入,方程不变,即曲线的图象关于原点对称,A错误;对于B,令,则,解得,令,则,解得,令,则,解得,故曲线经过的整点只能是,B错误;对于C,直线与曲线:必有公共点,因此若直线与曲线只有一个交点,则只有一个解,即只有一个解为,即时,无解,故,即实数的取值范围为,C错误,对于D,由,可得,时取等号,则曲线上任意一点到坐标原点的距离为,即都不超过3,D正确,故选:D8.已知平面上两定点、,则所有满足(且)的点的轨迹是一个圆心在上,半径为的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称作阿氏圆.已知棱长为3的正方体表面上动点满足,则点的轨迹长度为(
)A. B. C. D.【答案】B【分析】根据阿氏圆性质求出阿氏圆圆心O位置及半径,P在空间内轨迹为以O为球心的球,球与面,,交线为圆弧,求出截面圆的半径及圆心角,求出在截面内的圆弧的长度即可.【详解】在平面中,图①中以B为原点以AB为x轴建系如图,设阿氏圆圆心,半径为,,设圆O与AB交于M,由阿氏圆性质知,,,P在空间内轨迹为以O为球心半径为2的球,若P在四边形内部时如图②,截面圆与分别交于M,R,所以P在四边形内的轨迹为,在中,,所以,当P在面内部的轨迹长为,同理,当P在面内部的轨迹长为,当P在面时,如图③所示,面,平面截球所得小圆是以B为圆心,以BP为半径的圆,截面圆与分别交于,且,所以P在正方形内的轨迹为,所以,综上:P的轨迹长度为.故选:B【点睛】方法点睛:求球与平面公共点轨迹长度时先求出平面截球所得圆面的半径,当截面为完整的圆时可直接求圆周长,当截面只是圆的一部分时先求圆心角的大小再计算弧长.9.下列说法命题正确的是(
)A.已知,,则在上的投影向量为A.若直线l的方向向量为,平面的法向量为,则C.已知三棱锥,点P为平面ABC上的一点,且,则m−n=12D.若向量,(x,y,z都是不共线的非零向量)则称在基底下的坐标为,若在单位正交基底下的坐标为,则在基底下的坐标为【答案】CD【分析】根据投影向量公式计算判断A,应用向量共线判断B,判断四点共面判断C,根据基底运算判断D.【详解】对于A,由于,,则在的投影向量为,故A错误;对于B,e⋅n=−2+2=0,所以或,A错误对于C,因为P为平面ABC上的一点,所以四点共面,则由共面定理以及可得,,所以m−n=12,C对于D:在单位正交基底下的坐标为,即,所以在基底下满足,故,,,解得,,,则在基底下的坐标为,故D正确.故选:CD.已知,是双曲线E:的左、右焦点,过作倾斜角为的直线分别交y轴、双曲线右支于点、点,且,下列判断正确的是(
)A. B.的离心率等于C.双曲线渐近线的方程为 D.的内切圆半径是【答案】ACD【分析】根据已知条件可得出轴,可判断A项;根据双曲线的定义结合直角三角形的性质,构造齐次方程可求解离心率,故可判断B项;结合,得到,即可求得渐近线方程,可判断C项;利用三角形等面积法得到内切圆半径r的表达式与c有关,可判断D项正确.【详解】如图所示,因为分别是,的中点,所以中,,所以轴,A选项中,因为直线的倾斜角为,所以,故A正确;B选项中,直角中,,,,所以,得:,故B不正确;C选项中,由,即,即,即,所以双曲线的渐近线方程为:,故C正确;D选项中,的周长为,设内切圆为r,根据三角形的等面积法,有,得:,故D正确故选:ACD.11.在直三棱柱中,,,M是的中点,N是的中点,点P在线段上,点Q是线段上靠近M的三等分点,R是线段的中点,若面,则 (
)A. B.P为的中点C.三棱锥的体积为 D.三棱锥的外接球表面积为【答案】ACD【分析】由线面平行的判定定理得线线平行,从而判断A,并利用平面几何知识证明判断B,证明三棱锥的体积等于三棱锥的体积,由体积公式计算体积后判断C,确定三棱锥的外接球球心在上(如图),求出球半径后得球表面积判断D.【详解】对于选项AB,连接并延长交于S,连接,由平面几何知识可得:S是的中点,且N,R,S三点共线,是重心,因为面,平面,平面平面,所以,作交于,由直棱柱性质有,因此是平行四边形,,又由平面几何知识知是中点,因此是中点,从而,即P为上靠近N的三等分点,所以A正确,B错误;对于选项C,,因此是平行四边形,所以与互相平分,从而与点到平面的距离相等,三棱锥的体积等于三棱锥的体积,而,所以C正确;对于选项D,∵的外心是S,由得平面,∴三棱锥的外接球球心一定在直线上,设三棱锥的外接球球心为O,半径为R,,则,,∴,解得:,,球表面积为,所以D正确.故选:ACD.12.已知圆C1:x2+y2=16与圆C2:x2+y2+kx+y+m−16=0交于A,B【答案】±2【知识点】已知圆的弦长求方程或参数、相交圆的公共弦方程【分析】先求两个圆的公共弦所在直线方程,利用勾股定理求出弦长的表达式,结合最值可得答案.【详解】两圆的公共弦所在线的方程为:kx+y+m=0,圆心C1到直线的距离为d=AB=216−m21+所以216−m2故答案为±213.如图,已知四边形ABCD是菱形,,点E为AB的中点,把沿DE折起,使点A到达点P的位置,且平面平面BCDE,则异面直线PD与BC所成角的余弦值为.【答案】/【详解】因为,故或其补角就是异面直线PD与BC所成的角,连接PA,易知,,因为平面平面,菱形中,,即是正三角形,为中点,则,所以,又,所以即为平面与平面所成的二面角的平面角,因为平面平面,所以,,所以,所以,在中,由余弦定理得,所以异面直线PD与BC所成角的余弦值为.故答案为:.14.倾斜角为锐角的直线l经过双曲线C:x23m2−y2m2=1(m>0)的左焦点F1,分别交双曲线的两条渐近线于A,B两点,若线段【答案】77/【知识点】已知两点求斜率、已知方程求双曲线的渐近线、根据直线与双曲线的位置关系求参数或范围【分析】设Ax1y1,Bx2y2,M(x【详解】
设AB中点为M,两渐近线可写成x23−则M(x1①-②可得x1整理得,y1−y2x1如图,在Rt△F1MF2故tan∠MOF2=tan2∠MF1O=2tan∠MF1O1−tan2∠M15.如图所示,三棱柱中,侧棱垂直于底面,,,点分别为的中点.(1)求证:;(2)求点到平面的距离【答案】(1)证明见解析; (2).【知识点】证明线面垂直、求点面距离、线面垂直证明线线垂直【分析】(1)利用线面垂直的判定、性质推理即得.(2)连接,交于点E,连接BE,过点C作于,利用线面垂直的判定、性质推证平面,再借助直角三角形求出即可.【详解】(1)由,得,则,即,由平面,平面,则,而,平面,于是平面,连接,又平面,则,由点分别为的中点,得,所以.(2)连接,交于点E,连接BE,过点C作,F为垂足,由,侧棱垂直于底面,得且,又,,平面CBE,则平面CBE,又平面CBE,则,又,,平面,因此平面,即CF为点C到平面的距离,由平面,平面,得,,所以点C到平面的距离.16.已知圆.(1)直线截圆的弦长为,求的值.(2)记圆与、轴的正半轴分别交于两点,动点满足,问:动点的轨迹与圆是否有两个公共点?若有,求出公共弦长;若没有,说明理由.【答案】(1); (2)有,公共弦长为【分析】(1)计算圆心到直线距离为,再根据弦长公式计算得到答案.(2)设,根据得到,计算圆心距得到两圆相交,确定公共弦方程,计算弦长得到答案.【详解】(1)圆心到直线距离为,故,解得;(2),设,由得,化简得:,即,所以动点的轨迹是以为圆心,4为半径的圆,圆心距,,两圆相交,所以两圆有两个公共点,由两圆方程相减得公共弦所在直线方程为,圆心到公共弦的距离为,则公共弦长为.17.如图,四棱锥中,,,,,平面平面,且平面,平面平面.
(1)求四棱锥的体积;(2)设Q为上一点,若,求二面角的大小.【答案】(1)6; (2).【知识点】锥体体积的有关计算、面面垂直证线面垂直、面面角的向量求法【分析】(1)先由余弦定理依次求出,接着求出底面梯形的高进而求出其面积,再由已知条件结合面面垂直性质定理求出平面即可由锥体体积公式求出四棱锥的体积.(2)由结合(1)可以D为原点建立如图所示的空间直角坐标系,求出,,,设,进而求出和,接着由求出,从而解出和,进而可求出平面的法向量,由平面得平面的法向量为,再由计算结合图形即可得图二面角的大小.【详解】(1)因为平面,平面,平面平面,所以,同理得,所以,因为,,,所以,所以且,所以且,底面梯形的高为,所以底面梯形的面积,在中,,,,所以,所以,因为平面平面,平面平面,,平面,所以平面,所以四棱锥的体积.(2)因为,,,所以即,所以,,两两垂直,可以D为原点建立如图所示的空间直角坐标系,
则,A2,0,0,,C−1,3,0,所以,,,设,所以,,因为,所以,解得,因此,,设m=x,y,z为平面的法向量,则,则,取,则,,即,因为平面,所以平面的法向量为,设二面角为,则,所以由图二面角的大小为.18.已知椭圆的右焦点为,点在上,且轴,过点且与椭圆有且只有一个公共点的直线与轴交于点.(1)求椭圆的方程;(2)点是椭圆C上异于的一点,且三角形的面积为,求直线的方程;(3)过点的直线交椭圆于,两点(在的左侧),若为线段的中点,直线交直线于点,为线段的中点,求线段的最大值.【答案】(1); (2); (3)【知识点】根据椭圆过的点求标准方程、根据直线与椭圆的位置关系求参数或范围、求椭圆中的最值问题【分析】(1)由题意列方程求出,,即可求得椭圆方程;(2)利用联立方程的方法求出点为,继而证明,关于对称,即可求得答案;(3)设,,可推出,即而推出,设直线的方程为,即可推出轴,即可结合椭圆的几何性质得出答案.【详解】(1)由题意知点在上,且轴,设椭圆焦距为,则,将代入中,得,则,结合,从而,,椭圆C方程为;(2)由题意知过点且与椭圆有且只有一个公共点的直线的斜率不为,故设,与椭圆联立,得,由椭圆与直线只有一个交点,令,即①,又过,则②,联立①②可得,则,即得点为.设原点O0,0,由,,故,从而到的距离为到距离的倍,即在关于对称的直线上,又在椭圆上,从而,关于对称,故直线方程为(3)设,,,则,则①
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度房屋租赁及买卖合同:某房地产公司的房屋租赁及买卖协议2篇
- 人教版美术课件
- 样品协议合同范本共2篇
- 采购产品调研报告范文
- 油品购销合同范本2篇
- 2024版股权激励协议标的为高新技术企业3篇
- 部队垃圾分类报告范文
- 二零二四年度智能化家居定制合同2篇
- 2024版第三方支付工程款业务流程合同3篇
- 总公司和子公司的购销合同
- 唐多令芦叶满汀洲
- 不锈钢罐体加工工艺
- 基于深度学习的医学影像识别与分析
- 2024年磁共振成像装置项目实施方案
- 《高一数学三角函数诱导公式》课件
- 《设备润滑技术》课件
- 2024年湖北武汉城投集团招聘笔试参考题库含答案解析
- 第7课《珍视亲情+学会感恩》第1框《浓浓亲情+相伴一生》【中职专用】《心理健康与职业生涯》(高教版2023基础模块)
- 《感谢为我们服务的人》班会课件
- 高质量的幼儿园教育
- 小学体育-轻度损伤的自我处理教学课件设计
评论
0/150
提交评论