版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教A版(新教材)高中数学选择性必修第三册PAGEPAGE1第2课时计数原理的综合应用学习目标1.进一步理解分类加法计数原理和分步乘法计数原理的区别.2.会正确应用这两个计数原理计数.导语随着人们生活水平的提高,车辆拥有量迅速增长,汽车牌号仅用一个字母和数字表示已经不能满足需求,再加上许多车主还希望车牌号“个性化”,因此,汽车号码需要进行扩容,这样就需要“数出”某种方案下的所有号码数,号码的个数是如何进行计算的呢?一、组数问题例1用0,1,2,3,4,5可以组成多少个无重复数字且比2000大的四位偶数?解完成这件事可分为三类:第一类是个位数字为0的比2000大的四位偶数,可以分三步完成:第一步,选取千位上的数字,只有2,3,4,5可以选择,有4种选法;第二步,选取百位上的数字,除0和千位上已选定的数字以外,还有4个数字可以选择,有4种选法;第三步,选取十位上的数字,有3种选法.由分步乘法计数原理知,这类数的个数为4×4×3=48.第二类是个位数字为2的比2000大的四位偶数,可以分三步完成:第一步,选取千位上的数字,除去2,1,0只有3个数字可以选择,有3种选法;第二步,选取百位上的数字,在去掉已经确定的首尾2个数字之后,还有4个数字可以选择,有4种选法;第三步,选取十位上的数字,有3种选法.由分步乘法计数原理知,这类数的个数为3×4×3=36.第三类是个位数字为4的比2000大的四位偶数,其方法步骤同第二类.对以上三类用分类加法计数原理,得所求无重复数字且比2000大的四位偶数有48+36+36=120(个).反思感悟常见的组数问题及解题原则(1)常见的组数问题:奇数、偶数、整除数、各数位上的和或数字间满足某种特殊关系等.(2)常用的解题原则:首先明确题目条件对数字的要求,针对这一要求通过分类、分步进行组数;其次注意特殊数字对各数位上数字的要求,如偶数的个位数字为偶数、两位及其以上的数首位数字不能是0、被3整除的数各位数上的数字之和能被3整除等;最后先分类再分步从特殊数字或特殊位置进行组数.跟踪训练1(1)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24B.18C.12D.6〖答案〗B〖解析〗由于题目要求是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种情况),之后十位(2种情况),最后百位(2种情况),共12种;如果是第二种偶奇奇的情况:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共有12+6=18(种)情况.故选B.(2)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.279〖答案〗B〖解析〗0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).二、抽取与分配问题例2(1)高三年级的四个班到甲、乙、丙、丁、戊五个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()A.360种B.420种C.369种D.396种〖答案〗C〖解析〗方法一(直接法)以甲工厂分配班级情况进行分类,共分为四类:第一类,四个班级都去甲工厂,此时分配方案只有1种情况;第二类,有三个班级去甲工厂,剩下的一个班级去另外四个工厂,其分配方案共有4×4=16(种);第三类,有两个班级去甲工厂,另外两个班级去其他四个工厂,其分配方案共有6×4×4=96(种);第四类,有一个班级去甲工厂,其他三个班级去另外四个工厂,其分配方案有4×4×4×4=256(种).综上所述,不同的分配方案有1+16+96+256=369(种).方法二(间接法)先计算四个班自由选择去何工厂的总数,再扣除甲工厂无人去的情况,即5×5×5×5-4×4×4×4=369(种)方案.(2)甲、乙、丙三人各写一张贺卡,放在一起,再各取一张不是自己的贺卡,则不同取法的种数为________.〖答案〗2〖解析〗不妨由甲先来取,共2种取法,而甲取到谁的将由谁在甲取后第二个来取,余下来的人,都只有了一种选择,所以不同取法共有2×1×1=2(种).延伸探究若将“甲、乙、丙三人”改为“甲、乙、丙、丁四人”,其它条件不变,则有多少种不同的取法?解不妨由甲先来取,共3种取法,而甲取到谁的将由谁在甲取后第二个来取,共3种取法,余下来的人,都只有了一种选择,所以不同取法共有3×3×1×1=9(种).反思感悟选(抽)取与分配问题的常见类型及其解法(1)当涉及对象数目不大时,一般选用枚举法、树状图法、框图法或者图表法.(2)当涉及对象数目很大时,一般有两种方法:①直接使用分类加法计数原理或分步乘法计数原理.一般地,若抽取是有顺序的就按分步进行;若按对象特征抽取的,则按分类进行.②间接法:去掉限制条件计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.跟踪训练2(1)有4位老师在同一年级的4个班级中各教一个班的数学,在数学考试时,要求每位老师均不在本班监考,则安排监考的方法种数是()A.11B.10C.9D.8〖答案〗C〖解析〗方法一设四个班级分别是A,B,C,D,它们的老师分别是a,b,c,d,并设a监考的是B,则剩下的三个老师分别监考剩下的三个班级,共有3种不同的方法;同理当a监考C,D时,剩下的三个老师分别监考剩下的三个班级也各有3种不同的方法.这样,由分类加法计数原理知共有3+3+3=9(种)不同的安排方法.方法二让a先选,可从B,C,D中选一个,即有3种选法.若选的是B,则b从剩下的3个班级中任选一个,也有3种选法,剩下的两个老师都只有一种选法,根据分步乘法计数原理知,共有3×3×1×1=9(种)不同的安排方法.(2)从6名志愿者中选4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙2名志愿者不能从事翻译工作,则选派方案共有()A.280种 B.240种C.180种 D.96种〖答案〗B〖解析〗由于甲、乙不能从事翻译工作,因此翻译工作从余下的4名志愿者中选1人,有4种选法.后面三项工作的选法有5×4×3种,因此共有4×5×4×3=240(种)选派方案.三、涂色与种植问题例3(1)如图所示,有A,B,C,D四个区域,用红、黄、蓝三种颜色涂色,要求任意两个相邻区域的颜色各不相同,共有________种不同的涂法.〖答案〗18〖解析〗①若A,C涂色相同,则按照分步乘法计数原理,A,B,C,D可涂颜色的种数依次是3,2,1,2,则有3×2×1×2=12(种)不同的涂法.②若A,C涂色不相同,则按照分步乘法计数原理,A,B,C,D可涂颜色的种数依次是3,2,1,1,则有3×2×1×1=6(种)不同的涂法.所以根据分类加法计数原理,共有12+6=18(种)不同的涂法.(2)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,则有________种不同的种植方法.〖答案〗18〖解析〗方法一(直接法)若黄瓜种在第一块土地上,则有3×2=6(种)不同的种植方法.同理,黄瓜种在第二块、第三块土地上,均有3×2=6(种)不同的种植方法.故不同的种植方法共有6×3=18(种).方法二(间接法)从4种蔬菜中选出3种,种在三块地上,有4×3×2=24(种),其中不种黄瓜有3×2×1=6(种),故共有24-6=18(种)不同的种植方法.反思感悟涂色与种植问题的四个解答策略(1)按区域的不同以区域为主分步计数,并用分步乘法计数原理计算.(2)以颜色(种植作物)为主分类讨论法,适用于“区域、点、线段”问题,用分类加法计数原理计算.(3)将空间问题平面化,转化为平面区域的涂色问题.(4)对于不相邻的区域,常分为同色和不同色两类,这是常用的分类标准.跟踪训练3(1)如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两个端点异色,如果只有5种颜色可供使用,则不同染色方法的种数为________.〖答案〗420〖解析〗按照S→A→B→C→D的顺序进行染色,按照A,C是否同色分类:第一类,A,C同色,则有5×4×3×1×3=180(种)不同的染色方法.第二类,A,C不同色,则有5×4×3×2×2=240(种)不同的染色方法.根据分类加法计数原理,共有180+240=420(种)不同的染色方法.(2)如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一种颜色,共有4种颜色可供选择,则不同的着色方法共有________种(以数字作答).〖答案〗72〖解析〗①当使用4种颜色时,先着色第1区域,有4种方法,剩下3种颜色涂其他4个区域,即有1种颜色涂相对的2块区域,有3×2×2=12(种),由分步乘法计数原理得,共有4×12=48(种).②当使用3种颜色时,从4种颜色中选取3种,有4种方法,先着色第1区域,有3种方法,剩下2种颜色涂4个区域,只能是一种颜色涂第2,4区域,另一种颜色涂第3,5区域,有2种着色方法.由分步乘法计数原理得有4×3×2=24(种).综上,共有48+24=72(种).1.知识清单:(1)两个计数原理的区别与联系.(2)两个计数原理的应用:组数问题、选取问题、涂色问题及种植问题.2.方法归纳:分类讨论、正难则反.3.常见误区:分类标准不明确,会出现重复或遗漏问题.1.某乒乓球队里有6名男队员,5名女队员,从中选取男、女队员各1名组成混合双打队,则不同的组队方法的种数为()A.11B.30C.56D.65〖答案〗B〖解析〗先选1名男队员,有6种方法,再选1名女队员,有5种方法,故共有6×5=30(种)不同的组队方法.2.由数字1,2,3组成的无重复数字的整数中,偶数的个数为()A.15B.12C.10D.5〖答案〗D〖解析〗分三类,第一类组成一位整数,偶数有1个;第二类组成两位整数,其中偶数有2个;第三类组成三位整数,其中偶数有2个.由分类加法计数原理知共有偶数5个.3.甲、乙、丙三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有()A.4种B.5种C.6种D.12种〖答案〗C〖解析〗若甲先传给乙,则有甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 健康教育在糖尿病人的应用
- 2024专业财务规划咨询协议范例
- 2024年度淡水鱼苗买卖协议范本
- 2024年份白酒销售代理协议范本
- 2024年基坑支护施工安全责任协议
- 2024年度五金产品交易简化协议样式
- 2024年度上上签电子签约协议
- 2024综合知识竞赛试题及答案全套
- 2024影视剧组管理岗聘用协议
- 2024年商业楼宇保洁服务承包协议
- 农业旅游商业计划书
- 儿童危重症患者的护理
- 金融市场2024年的金融监管和市场波动
- 2024普通高中物理课程标准解读
- 2024年广西玉林市自来水有限公司招聘笔试参考题库含答案解析
- 2022年度食品安全负责人考试题库(含答案)
- 教师近3年任教学科学生学业水平和综合素质
- 企业法律合规与外部监管的内外因素分析
- 2022年版煤矿安全规程
- 九年级数学上册 期中考试卷(湘教版)
- 冷弯机行业市场研究报告
评论
0/150
提交评论