




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学教学设计15篇高中数学教学设计1一、探究式教学模式概述1、探究式教学模式的含义。探究式教学就是学生在教师引导下,像科学家发现真理那样以类似科学探究的方式来展开学习活动,通过自己大脑的独立思考和探究,去弄清事物发展变化的起因和内在联系,从中探索出知识规律的教学模式。它的基本特征是教师不把跟教学内容有关的内容和认知策略直接告诉学生,而是创造一种适宜的认知和合作环境,让学生通过探究形成认知策略,从而对教学目标进行一种全方位的学习,实现学生从被动学习到主动学习,培养学生的科学探究能力、创新意识和科学精神。可见,探究式教学主张把学习知识的过程和探究知识的过程统一起来,充分发挥学生学习的自主性和参与性。2、堂探究式教学的实质。课堂探究式教学的实质是使学生通过类似科学家科学探究的过程来理解科学探究概念和科学规律的本质,并培养学生的科学探究能力。具体地说,它包括两个相互联系的方面:一是有一个以“学”为中心的探究性学习环境。在这个环境中有丰富的教学资源,而且这些资源是围绕某个知识主题来展开的。这个学习环境具有民主和谐的课堂气氛,它使学生很少感到有压力,能自主寻找所需要的信息,提出自己的设想,并以自己的方式检验其设想。二是教师可以给学生提供必要的帮助和指导,使学生在研究中能明确方向。这说明探究式教学的本质特征是不直接把与教学目标有关的概念和认知策略告诉学生,取而代之的是教师创造出一种智力交流和社会交往的环境,让学生通过探究自己发现规律。3、探究式教学模式的特征。(1)问题性。问题性是探究式教学模式的关键。能否提出对学生具有挑战性和吸引力的问题,使学生产生问题意识,是探究教学成功与否的关键所在。恰当的问题会激起学生强烈的学习愿望,并引发学生的求异思维和创造思维。现代教育心理学研究提出:“学生的学习过程和科学家的探索过程在本质上是一样的,都是一个发现问题、分析问题、解决问题的过程。”所以培养学生的问题意识是探究式教学的重要使命。(2)过程性。过程性是探究式教学模式的重点。爱因斯坦说:“结论总以完成的形式出现,读者体会不到探索和发现的喜悦,感觉不到思想形成的生动过程,也就很难达到清楚、全面理解的境界。”探究式教学模式正是考虑到这些人的认知特点来组织教学的,它强调学生探索知识的经历和获得新知识的亲身感悟。(3)开放性。开放性是探究式教学模式的难点。探究式教学模式总是综合合作学习、发现学习、自主学习等学习方式的长处,培养学生良好的学习态度和学习方法,提倡和发展多样化的学习方式。探究式教学模式要面对大量开放性的问题,教学资源和探究的结论面对生活、生产和科研是开放的,这一切都为教师的教与学生的学带来了机遇与挑战。二、教学设计案例1、教学内容:数字排列中3、9的探究式教学。2、教学目标。(1)知识与技能:掌握数字排列的知识,能灵活运用所学知识。(2)过程与方法:在探究过程中掌握分析问题的方法和逻辑推理的'方法。(3)情感态度与价值观:培养学生观察、分析、推理、归纳等综合能力,让学生体会到认识客观规律的一般过程。3、教学方法:谈话探究法,讨论探究法。4、教学过程。(1)创设情境。教师:在高中数学第十章的教学中,有关数字排列的问题占有重要位置。我们曾经做过的有关数字排列的题目,如“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除。那么能被3整除的数,能被9整除的数有何特点?(2)提出问题。问题1:在用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的共有()A、36个B、18个C、12个D、24个问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?(3)探究思考。点评:乍一看问题1,对于由若干个数字排列成9的倍数的问题,如:81、72、63、54、45、36、27、18、9这些能够被9整除的数的个位数字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的数,不能只考虑个位数字了。于是,需另辟蹊径,探究能被9整除的数的特点,寻求解决问题的途径。教师:同学们观察81、72、63、54、45、36、27、18、9这些数,甚至再写出几个能被9整除的数,如981、1872等,看看它们有何特点?学生:它们都满足“各位数字之和能被9整除”。教师:此结论的正确性如何?学生:老师,我们证明此结论的正确性,好吗?教师:好。学生:证明:不妨以n是一个四位数为例证之。设n=1000a+100b+10c+d(a,b,c,d∈N)依条件,有a+b+c+d=9m(m∈N)则n=1000a+100b+10c+d=(999a+a)+(99b+b)+(9c+c)+d=(999a+99b+9c)+(a+b+c+d)=9(111a+11b+c)+9m=9(111a+11b+c+m)∵a,b,c,m∈N∴111a+11b+c+m∈N所以n能被9整除同理可证定理的后半部分。教师:看来上述结论正确。所以得到如下定理。定理:如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。教师:利用该定理可解决“能被3、9整除”的数字排列问题,请同学们先解答问题1。学生:尝试1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。教师:启发学生观察这些数字有何特点?提问学生。学生:可以看出只要从1、2、3、4、5、6这六个数中,选取的四个数字中含1(或2),或者同时含1、2,选取的四个数字之和都不是9的倍数。教师:请学生们继续尝试选取其他数字试一试。学生:3+4+5+6=18是9的倍数。教师:因此用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的数,就是由3、4、5、6进行全排列所得,共有=24(个)。故应选D。(4)学以致用。问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?教师:从上面的定理知:如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。同学们对问题2有何想法?学生讨论:学生1:被6整除的五位数必须既能被2整除,又能被3整除,故能被6整除的五位数,即为各位数字之和能被3整除的五位偶数。学生2:由于1+2+3+4+5=15,能被3整除,所以选取的5个数字可分两类:一类是5个数字中无0,另一类是5个数字中有0(但不含3)。学生3:第一类:5个数字中无0的五位偶数有。第二类:5个数字中含有0不含3的五位偶数有两类,第一,0在个位有个;第二,个位是2或4有,所以共有+。学生4:由分类计数原理得:能被6整除的无重复数字的五位数共有++=108(个)。(5)概括强化。重点:了解数字排列问题的特点,理解掌握数字排列中3、9问题的规律。难点:数字排列知识的灵活应用。关键:证明的思路以及定理的得出。新学知识与已知知识之间的区别和联系:已知知识“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除”。新学知识“如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。都是数字排列知识,要学会灵活应用。(6)作业。请同学们自拟练习题,以求达到熟练解决此类问题的目的。总之,探究式教学模式是针对传统教学的种种弊端提出来的,新课程改革强调改变课程过于注重知识的传授和过于强调接受式学习的状况,倡导学生主动参与乐于探究、勤于动手,让学生经历科学探究过程,学习科学研究方法,并强调获得知识、技能的过程成为学会学习和形成价值观的过程,以培养学生的探究精神、创新意识和实践能力。高中数学教学设计2学习目标明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题。学习过程一、学前准备复习:1.(课本P28A13)填空:(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是;(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是;(3)5名工人要在3天中各自选择1天休息,不同方法的种数是;(4)集合A有个元素,集合B有个元素,从两个集合中各取1个元素,不同方法的种数是;二、新课导学◆探究新知(复习教材P14~P25,找出疑惑之处)问题1:判断下列问题哪个是排列问题,哪个是组合问题:(1)从4个风景点中选出2个安排游览,有多少种不同的方法?(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的'方法?◆应用示例例1.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?例2.7位同学站成一排,分别求出符合下列要求的不同排法的种数。(1)甲站在中间;(2)甲、乙必须相邻;(3)甲在乙的左边(但不一定相邻);(4)甲、乙必须相邻,且丙不能站在排头和排尾;(5)甲、乙、丙相邻;(6)甲、乙不相邻;(7)甲、乙、丙两两不相邻。◆反馈练习1.(课本P40A4)某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?2.5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列3.马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种。当堂检测1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目。如果将这两个节目插入原节目单中,那么不同插法的种数为()A.42B.30C.20D.122.(课本P40A7)书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?课后作业1.(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位奇数?(2)能够组成多少个大于的正整数?2.(课本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?高中数学教学设计3一、教学目标1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。3、通过对四种命题之间关系的学习,培养学生逻辑推理能力4、初步培养学生反证法的数学思维。二、教学分析重点:四种命题;难点:四种命题的关系1。本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。2。教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,3.“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则_,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。三、教学手段和方法(演示教学法和循序渐进导入法)1。以故事形式入题2多媒体演示四、教学过程(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!设计意图:创设情景,激发学生学习兴趣(二)复习提问:1.命题“同位角相等,两直线平行”的条件与结论各是什么?2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?3.原命题真,逆命题一定真吗?“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.学生活动:口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.(三)新课讲解:1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。(四)组织讨论:让学生归纳什么是否命题,什么是逆否命题。例1及例2(五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?学生活动:讨论后回答这两个逆否命题都真.原命题真,逆否命题也真引导学生讨论原命题的真假与其他三种命题的真假有什么关系?举例加以说明,同学们踊跃发言。(六)课堂小结:1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:原命题若p则q;逆命题若q则p;(交换原命题的条件和结论)否命题,若¬p则¬q;(同时否定原命题的条件和结论)逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定)2、四种命题的关系(1).原命题为真,它的逆命题不一定为真.(2).原命题为真,它的.否命题不一定为真.(3).原命题为真,它的逆否命题一定为真(七)回扣引入分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:第一句:“该来的没来”其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。同学们,生活中处处是数学,期待我们善于发现的眼睛五、作业1.设原命题是“若断它们的真假.,则”,写出它的逆命题、否命题与逆否命题,并分别判2.设原命题是“当时,若,则”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假.高中数学教学设计4函数的奇偶性函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性.教学目标:1.通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.2.理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.3.在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的任务分析这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=k_,反比例函数,(k≠0),二次函数y=a_,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(_),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(_)=0,_∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果.一、问题情景1.观察如下两图,思考并讨论以下问题:(1)这两个函数图像有什么共同特征?(2)相应的两个函数值对应表是如何体现这些特征的?可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量_取一对相反数时,相应的两个函数值相同.对于函数f(_)=_,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个_,都有f(-_)=(-_)2=_2=f(_).此时,称函数y=_2为偶函数.2.观察函数f(_)=_和f(_)=的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.22可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量_取一对相反数时,相应的函数值f(_)也是一对相反数,即对任一_∈R都有f(-_)=-f(_).此时,称函数y=f(_)为奇函数.二、建立模型由上面的分析讨论引导学生建立奇函数、偶函数的定义1.奇、偶函数的定义如果对于函数f(_)的定义域内任意一个_,都有f(-_)=-f(_),那么函数f(_)就叫作奇函数.如果对于函数f(_)的定义域内任意一个_,都有f(-_)=f(_),那么函数f(_)就叫作偶函数.2.提出问题,组织学生讨论(1)如果定义在R上的函数f(_)满足f(-2)=f(2),那么f(_)是偶函数吗?(f(_)不一定是偶函数)(2)奇、偶函数的图像有什么特征?(奇、偶函数的`图像分别关于原点、y轴对称)(3)奇、偶函数的定义域有什么特征?(奇、偶函数的定义域关于原点对称)三、解释应用[例题]1.判断下列函数的奇偶性.注:①规范解题格式;②对于(5)要注意定义域_∈(-1,1].2.已知:定义在R上的函数f(_)是奇函数,当_>0时,f(_)=_(1+_),求f(_)的表达式.解:(1)任取_0,∴f(-_)=-_(1-_),而f(_)是奇函数,∴f(-_)=-f(_).∴f(_)=_(1-_).(2)当_=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.3.已知:函数f(_)是偶函数,且在(-∞,0)上是减函数,判断f(_)在(0,+∞)上是增函数,还是减函数,并证明你的结论.解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(_)在(0,+∞)上是增函数,证明如下:任取_1>_2>0,则-_1∵f(_)在(-∞,0)上是减函数,∴f(-_1)>f(-_2).又f(_)是偶函数,∴f(_1)>f(_2).∴f(_)在(0,+∞)上是增函数.思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?[练习]1.已知:函数f(_)是奇函数,在[a,b]上是增函数(b>a>0),问f(_)在[-b,-a]上的单调性如何.2.f(_)=-_3|_|的大致图像可能是()3.函数f(_)=a_2+b_+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(_)是偶函数.(2)函数f(_)是奇函数.4.设f(_),g(_)分别是R上的奇函数和偶函数,并且f(_)+g(_)=_(_+1),求f(_),g(_)的解析式.四、拓展延伸1.有既是奇函数,又是偶函数的函数吗?若有,有多少个?2.设f(_),g(_)分别是R上的奇函数,偶函数,试研究:(1)F(_)=f(_)·g(_)的奇偶性.(2)G(_)=|f(_)|+g(_)的奇偶性.3.已知a∈R,f(_)=a-,试确定a的值,使f(_)是奇函数.4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?高中数学教学设计5教学目标:1.掌握基本事件的概念;2.正确理解古典概型的两大特点:有限性、等可能性;3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.教学重点:掌握古典概型这一模型.教学难点:如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.教学方法:问题教学、合作学习、讲解法、多媒体辅助教学.教学过程:一、问题情境1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?二、学生活动1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;2.(1)共有“抽到红心1”“抽到红心2”“抽到红心3”“抽到黑桃4”“抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;(2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,这6种情况的可能性都相等;三、建构数学1.介绍基本事件的概念,等可能基本事件的概念;2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);3.得出随机事件发生的概率公式:四、数学运用1.例题.例1有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的.可能性相同.探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.(设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)例2一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,则摸到的两只球都是白球的概率是多少?问题:在运用古典概型计算事件的概率时应当注意什么?①判断概率模型是否为古典概型②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.教师示范并总结用古典概型计算随机事件的概率的步骤例3同时抛两颗骰子,观察向上的点数,问:(1)共有多少个不同的可能结果?(2)点数之和是6的可能结果有多少种?(3)点数之和是6的概率是多少?问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.问题:点数之和是3的倍数的可能结果有多少种?(介绍图表法)例4甲、乙两人作出拳游戏(锤子、剪刀、布),求:(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.2.练习.(1)一枚硬币连掷3次,只有一次出现正面的概率为_________.(2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..(3)第103页练习1,2.(4)从1,2,3,…,9这9个数字中任取2个数字,①2个数字都是奇数的概率为_________;②2个数字之和为偶数的概率为_________.五、要点归纳与方法小结本节课学习了以下内容:1.基本事件,古典概型的概念和特点;2.古典概型概率计算公式以及注意事项;3.求基本事件总数常用的方法:列举法、图表法.高中数学教学设计6一、课程说明(一)教材分析:此次一对一家教所使用教材为北师大版高中数学必修5。辅导内容为第一章第二节等差数列。前一节的内容为数列,学生已初步了解到数列的概念,知道什么是首项,什么是通项等等。以及了解到什么是递增数列,什么是递减数列。通过第一节的学习的铺垫,可以让学生更自主的探究,学习等差数列。而我也是在这些基础上为她讲解第二节等差数列。(二)学生分析:此次所带学生是一名高二的学生。聪明但是不踏实,做题浮躁。基础知识掌握不够牢靠,知识的运用能力较差,分析能力较弱,解题思路不清。每次她遇到会的题,就快快的草率做完,总会有因马虎而犯的错误。遇到稍不会的,总是很浮躁,不能冷静下来慢慢思考。就由略不会变成不会。但她也是个虚心听教的孩子,给她讲课,她也会很认真地听讲。(三)教学目标:1、通过教与学的配合,让她能够懂得什么是等差数列,以及等差数列的通项公式。2、通过对公式的推导,让她加深对内容的理解,以及学会自己对公式的推导。并且能够灵活运用。3、在教学中让她通过对公式的推导来明白推理的艺术,并且培养她学习,做题条理清晰,思路缜密的好习惯。4、让她在学习,做题中一步步抽丝剥茧,寻找解决问题的方法,培养她敢于面对数学学习中的困难,并培养她对克服困难和运用知识。耐心地解决问题。5、让她在学习中发现数学的独特的美,能够爱上数学这门课。并且认真对待,自主学习。(四)教学重点1让学生正确掌握等差数列及其通项公式,以及其性质。并能独立的推导。2、能够灵活运用公式并且能把相应公式与题相结合。(五)教学难点:1、让学生掌握公式的推导及其意义。2如何把所学知识运用到相应的题中。二、课前准备(一)教学器材对于一对一教教采用传统讲课。一张挂历。(二)教学方法通过对生活中的有规律数据的观察来提出问题,让学生结合前一节所学,思考有什么规律。从生活中着手有利于激发学生的`兴趣爱好,并能更积极地学习。让学生先独立的思考,不仅能让她对所学知识映像更为深刻,并且培养她的缜密思维。让她回答后,我再帮助她纠正,并且让她提出心中所虑。经过我给她讲完课后,让她回答自己先前的疑虑。并且让她自己总结,得出结论。最后让她勤加练习。以一种“提出问题—探究问题—学习知识—解答问题—得出结论—强加训练”的模式方法展开教学。(三)课时安排课时大致分为五部分:1、联系实际提出相关问题,进行思考。2以我教她学的模式讲授相关章节知识。3、让学生练习相关习题,从所学知识中找其相应解题方案。4学生对知识总结概括,我再对其进行补充说明。5布置作业,让她课后多做练习。三、课程设计(一)提出问题【引入】根据我们的挂历上,一个月的日期数。通过观察每一行日期和每一列日期它们有什么规律?13579............66666......13579............66666......这些每一行有什么规律?(二)分析问题并讲解1、通过观察每一个数与前一个数相差为同一个常数。再结合前一节所学数列的定义总结出“每一项与前一项的差为同一个常数,我们称这样的数列为等差数列。”并且得出“这个常数为等差数列的公差。”2、设首项为a1,公差为d。由思考题123可观察出什么?由学生通过她的发现来推导总结出ana1n1dnda1d3、通过分析通项公式的特点,做下题(学生自己分析,思考来做。)例:已知在等差数列{an}中,a520a20__,试求出数列的通项公式?通过学生做题再分析总结,用详细的语言讲解总结等差数列的性质4、由以上公式,性质,让学生总结。讲解等差数列的定义。并且掌握数列的递增,递减与公差d的关系。5总结,串讲当日所学给出题目:12349899100让她求其和Sn,并思考如何快速计算?(三)布置作业1、总结当日所学。2做练习册上章节习题。3、根据当日所学以及课上所讲求的思考题,找出快速运算方法,并引导预习等差数列前n项和。四、设计理念以一种最简便,易懂的方式让学生来学习,一切以让学生正确掌握知识,并能正确运用为理念。并能充分调动学生和家教老师的积极性为理念来设计。五、教学设计反思本节课教程内容较难,是下一节等差数列前n项和的铺垫。此节课学习通过联系实际,把数学融入到生活中,从生活中探究学习数学。并提出问题,分析问题。把主动权交给学生,由她先独立思考总结,再由我给她正确讲解总结,然后再让她做相应练习题,课后再认真总结。这样可以加强她学习的主动性,更有利于她对知识的消化,吸收。这种方法同时可以培养学生的思维能力,让她从自主学习中探索适合自己的学习方法,培养她独立思考的能力。让她更深刻的了解知识内涵,巩固所学。使她能灵活运用所学。高中数学教学设计71.站在授课者视角对课例“正态分布”品课教学片段一引导学生观察小球从高尔顿板上方下落过程师:投放小球前,知道小球落在哪个槽中?生:不知道师:给槽编号,落槽中小球堆积高度反映什么?生:落槽内球频数.师:如何用所学知识研究落在各小槽内小球分布情况?生:无回应师:是否记得在必修3中,如何研究居民人均用水问题的吗?生:哦,用频率分布直方图.师:你们真棒!教学片段二多媒体演示必修3居民用水问题频率分布直方图师:如何用样本频率分布直方图估计总体分布密度曲线?生:用频率分布折线图.师:很好,当样本容量越来越大,频率分布折线图有何变化趋势?生:越来越接近总体分布密度曲线.师:答得很好.实际生活中,常用频率分布直方图及频率分布折线图,研究离散型随机变量分布规律.如可用频率分布直方图研究各种高考成绩分布规律,预测高考分数线?多媒体演示:20__年某中学高考数学成绩频率分布直方图及折线图.师:居民平均用水量及高考成绩频率分布直方图,有什么共同特点?生:他们频率分布直方图皆具有中间高,两边低特点.师:观察得很好,下面我们再借助高尔顿板试验观察一下,当试验次数增加,或组距不断缩小时,频率分布直方图及频率分布折线图有什么变化?片段一二品课授课教师了解正态分布邻近种概念是离散型随机变量分布,种差是离散与连续差异.欲跨越由离散到连续认知障碍,须从学生已知的离散型分布研究方法入手.借助实验及数形结合方法,按照回顾旧知――动态生成正态分布密度曲线――数形结合探究密度曲线特征――实际应用正态分布性质的顺序,设置问题主线.逐步引导学生揭开概念抽象面纱,探究其本质.教师寻找学生认知熟悉点:必修3中居民人均用水量及高考数学成绩分布问题创设情境.激发学生探究兴趣.教学片段三教师借助几何画板演示:引导学生思考当试验次数增加或组距不断缩小时,频率分布折线图有什么变化特点?师:试验次数增加或组距不断缩小时,频率分布折线图像什么?生:象编钟.师:这条钟形曲线就是正态分布密度曲线.十八世纪数学家们经过几十年努力,应用求导、对数、无穷级数、数学积分,变量代换等数学方法,推导出其函数解析式:φμσ(_)=1σ2πe-(_-μ)2σ2(其中μ与σ是参数,是样本估计的均值及标准差)片段三品课教师借助高尔顿板演示.引导学生直观感受:①频率直方图共同特征.②样本容量增大,频率折线图逐步逼近连续光滑“钟型”曲线.帮助学生跨越由离散到连续认知障碍,从形上感知正态分布密度曲线,并激发学生探究欲望,何种随机变量服从正态分布?正态分布密度曲线有何特征?教学片段四师:小球很小时,如何更具体刻画小球位置呢?生:无回应.师:去掉高尔顿板最下边球槽,沿高尔顿板底部建立水平坐标轴,刻度单位为球槽宽度,若用_表示小球第1次与高尔顿板底部接触时坐标,则_是何种随机变量?生:连续型随机变量.师:如何计算小球落在区间[a,b]内概率?生:无应答.师:如何用频率分布直方图计算概率?生:算面积.师:好,在高尔顿实验中,如何算小球落在[a,b]内概率?生:算曲边梯形面积.师:当试验次数增加或组距不断缩小时,如何用钟形曲线计算概率?生:算定积分.师:很好.片段四品课形象感知正态分布“钟形”曲线后,教师设问,引导学生抓“联系”搭建脚手架,在学生无回应时,演示去掉高尔顿板最下边球槽,沿高尔顿板底面建立水平坐标轴,刻度单位为球槽宽度.若用_表示小球第1次与高尔顿板底部接触坐标.小球很小,可视为质点,由小球落下的随机性,引导学生认知_是随机变量,可以坐标方式研究小球分布,引导学生搭建第一个脚手架:坐标系,以坐标轴上点稠密性,帮助学生跨越离散到连续认知障碍.紧接着启发学生类比离散型随机变量概率计算,算曲边梯形面积,进而算定积分来研究连续性随机变量在区间[a,b]上概率.引领学生搭建第二个脚手架:算定积分.为构建正态分布概念做好铺垫.授课者在学生认知最近发展区域内,引领学生搭建脚手架,并根据概念逻辑结构,创设激发学生认知冲突的教学情境,提供大量与新概念相关事例及种属概念,巧妙借助于多媒体演示,数形结合由特殊到一般,具体到抽象,已知到未知,引导学生感受概念形成过程,观察、分析、辨别、揭开新概念抽象面纱,突破教学难点,这是本节课亮点之一.恰当教学情境创设及教学方法选择带来和谐顺畅师生互动氛围,促进了教学目标实现.教学片段五师:正态分布中参数μ和σ可以用样本均值和标准差去估计,正态分布完全由μ和σ确定.两个参数对正态曲线有何影响呢?多媒体演示:引导学生观察:若σ固定,图像随μ值的变化而沿_轴平移.若μ固定,曲线的形状由σ决定:σ越小,曲线越“高瘦”表示总体分布越集中.σ越大,曲线越“矮胖”表示总体分布越分散.师:当μ=0,σ=1时称_服从标准正态分布,记_~N(0,1)片段五品课借助多媒体演示,形象直观引导学生观察出μ与σ对正态分布密度曲线影响,了解μ与σ两个参数真实意义,促进学生对正态分布本质深入了解.此处可为数形结合突破教学难点之亮点.课例品课从五个教学片段可见,教师设问目的性明确,设问方式恰当,能适时引领,但给学生的思维时间较少,对所产出现的疑惑问题直接给出解释,学生始终被老师牵着走.这也是这节课无思维创新的原因.从教学呈现品,结构清晰,主线明确,授课者语言精确简洁,板书设计突出概念关键点.多媒体使用恰当,能帮组学生跨越认知障碍,理解概念本质,把握正态分布曲线特征,对实现教学目标起到辅助作用.从课程性质品,学习目标符合教学大纲及学生特点,教学内容尊重教材,容量过大.学习目标检测以习题呈现,留给学生思考时间少,教师对反馈评价少,多直接给答案.但也只能如此,才能在一节课内完整呈现正态分布概念,此处值得同行商讨.教师适时应用正态分布曲线特征,进行德育渗透是本节课一亮点,反映授课者具有培养学生数学应用意识及综合素养的教育教学理念.从课程文化上品,授课者设问皆能激发学生认知冲突,指明探究方向.其中教学片段六中设问,激发认知冲突最激烈,课堂氛围热烈和谐,学生探究兴趣很浓,教师评价也及时,但当再度设问学生困惑时,教师没深入引领而直接解释,学生失去产生创新思维机会,传统灌输法教学使课堂合作探究氛围消失.这是教师受时间限制,对课堂预设外问题处理不当的结果.本节课问题环环相扣,反映授课人逻辑思维严谨.能多次激发学生认知冲突,反映授课人熟知学生认知特点,善于引领学生思考.数形结合,成功组织合作探究是本节课特色.2.站在学生视角对课例品课教学设计片段:正态分布是学生在学习离散型随机变量及其分布基础上,高中阶段唯一所学连续型随机变量分布.学生学习正态分布内容有三个认知障碍:①由离散型随机变量到连续型随机变量的认知飞跃.②生活中何种随机变量服从正态分布.③正态分布曲线有何性质?如何帮助学生成功跨越认知障碍,理解正态分布概念,已成为一场挑战.片段品课:从教学设计可见,授课人对学生已有认知、概念生长点及认知特点做过充分研究,为后面选择教学情境及方法做好铺垫.课堂反馈练习:①若随机变量_~Nμ,σ2则p_≤μ=_______②设随机变量_~N2,32若p(ξ>c+2)=p(ξ学生视角品课:学生大多能在三十分钟内注意力集中,并参与课堂活动,积极思考,合作探究.但记笔记同学不多,这恰是多媒体演示造成的弊端.在概念探究活动中学生没提出问题,其原因有二:一是教师设问面较全,二是学生无足够时间思考并提出问题.教师对预设外问题处理有不当之处.课容量大,学生无自主学习时间.借助多媒体演示,学生对正态分布曲线特征把握比较顺畅,困惑仅在于对称性理解.这说明数形结合有助于学生把握概念本质,但概念本质理解离不开数学分析推理论证,而这恰是学生能力的弱项,有待训练提高.学生从本节课中学到了数形结合探究数学概念本质的.方法.但由于留给学生课堂练习时间不足五分钟,故对练习中错误,教师无时间破释,仅给出答案.从学生错误可分析出,学生对正态分布曲线特征缺乏变式运用能力,此能力的锻炼提高.离不开构建概念变式习题串.如何培养学生构建概念知识网及变式习题串的能力,值得同行进一步探究.3.站在听课者视角对课例品课本节课教学程序合理,问题主线明确,层次清晰,巧用多媒体演示实验,数形结合,帮组学生跨越认知障碍,理解正态分布概念,把握正态分布曲线性质.板书设计突出关键词.教师成功引领学生合作探究,课堂氛围和谐热烈,但学生完全被教师思维所引领,缺乏足够独立思维时空,学生没提出预设外问题,仅是困惑后被灌输,无创新思维.整节课容量大,时间紧,练习少,学习方式及学法指导方式有待改进.课中教师提倡“以生为本”的教学理念,但苦于时间限制,无法尽善尽美,前半段教学体现新理念,后半段回归传统教学.其原因令同行深思:一节课是确保数学概念完整呈现重要,还是留给学生足够探究时空重要.这恰是同行值得探讨之问题.4.我的积累及理念更新品课活动有利于教师教学艺术及综合素养迅速提升,学校应将品课活动与教学检查同时进行,列入年度教学计划,每学年开展一次,并将品课材料汇编成册,留于教学研究及校本资源研发.高中数学教学设计8教学目标:①掌握对数函数的性质。②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值域及单调性。③注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。教学重点与难点:对数函数的性质的应用。教学过程设计:⒈复习提问:对数函数的概念及性质。⒉开始正课1比较数的大小例1比较下列各组数的'大小。⑴loga5.1,loga5.9(a>0,a≠1)⑵log0.50.6,logЛ0.5,lnЛ师:请同学们观察一下⑴中这两个对数有何特征?生:这两个对数底相等。师:那么对于两个底相等的对数如何比大小?生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。师:对,请叙述一下这道题的解题过程。生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9;当a>1时,函数y=loga_单调递增,所以loga5.1板书:解:Ⅰ)当0∵5.1loga5.9Ⅱ)当a>1时,函数y=loga_在(0,+∞)上是增函数∵5.1师:请同学们观察一下⑵中这三个对数有何特征?生:这三个对数底、真数都不相等。师:那么对于这三个对数如何比大小?生:找“中间量”,log0.50.6>0,lnЛ>0,logЛ0.51,log0.50.6板书:略。师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数的单调性比大小;②借用“中间量”间接比大小;③利用对数函数图象的位置关系来比大小。2函数的定义域,值域及单调性。高中数学教学设计9一、单元教学内容(1)算法的基本概念(2)算法的基本结构:顺序、条件、循环结构(3)算法的基本语句:输入、输出、赋值、条件、循环语句二、单元教学内容分析算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力三、单元教学课时安排:1、算法的基本概念3课时2、程序框图与算法的基本结构5课时3、算法的.基本语句2课时四、单元教学目标分析1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。五、单元教学重点与难点分析1、重点(1)理解算法的含义(2)掌握算法的基本结构(3)会用算法语句解决简单的实际问题2、难点(1)程序框图(2)变量与赋值(3)循环结构(4)算法设计六、单元总体教学方法本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。七、单元展开方式与特点1、展开方式自然语言→程序框图→算法语句2、特点(1)螺旋上升分层递进(2)整合渗透前呼后应(3)三线合一横向贯通(4)弹性处理多样选择八、单元教学过程分析1.算法基本概念教学过程分析对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。2.算法的流程图教学过程分析对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。3.基本算法语句教学过程分析经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,4.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。九、单元评价设想1、重视对学生数学学习过程的评价关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。2、正确评价学生的数学基础知识和基本技能关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法高中数学教学设计10提出问题:新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。教材中的地位:本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。设计背景:在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。教学目标:一、知识:理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。二、过程与方法:由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性质解决实际问题。三、能力:1.通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进一步体会数形结合的思想方法。2.通过对指数函数的研究,使学生能把握函数研究的基本方法。教学过程:由实际问题引入:问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,?1个这样的细胞分裂_次后,得到的细胞的个数y与_之间的关系是什么?分裂次数与细胞个数1,2;2,2_2=22;3,2_2_2=23;????;_,2_2_……_2=2_归纳:y=2_问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原来的`84%,那么经过_年后剩留量y与_的关系是什么?经过1年,剩留量y=1_84%=;经过2年,剩留量y=_=?经过_年,剩留量y=寻找异同:你能从以上的两个例子中得到的关系式里找到什么异同点吗?共同点:变量_与y构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同。那么,今天我们来学习新的一个基本函数:指数函数得到指数函数的定义:定义:形如y=a_(a>0且a≠1)的函数叫做指数函数。在以前我们学过的函数中,一次函数用形如y=k_+b(k≠0)的形式表示,反比例函数用形如y=k/_(k≠0)表示,二次函数y=a_2+b_+c(a≠0)表示。对于其一般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?若a=0,当_>0时,恒等于0,没有研究价值;当_≤0时,无意义。若a若a=1,则=1,是一个常量,也没有研究的必要。所以有规定且a>0且a≠1。由定义,我们可以对指数函数有一初步熟悉。进一步理解函数的定义:指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的定义域为R。研究函数的途径:由函数的图像的性质,从形与数两方面研究。学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势)图像的分布情况与函数的定义域,值域有关,函数的变化趋势体现函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊到一般。我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。要求学生描述出指数函数图像的特征,并试着描述出性质。数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。总之,通过案例研究,不断研究新教材、新理念,不断调整教学策略优化课堂教学,培养学生探究学习与创新学习能力将是我们在数学教学中要继续探究的课题。高中数学教学设计11一、概述教材内容:等比数列的概念和通项公式的推导及简单应用教材难点:灵活应用等比数列及通项公式解决一般问题教材重点:等比数列的概念和通项公式二、教学目标分析1.知识目标1)2)掌握等比数列的.定义理解等比数列的通项公式及其推导2.能力目标1)学会通过实例归纳概念2)通过学习等比数列的通项公式及其推导学会归纳假设3)提高数学建模的能力3、情感目标:1)充分感受数列是反映现实生活的模型2)体会数学是来源于现实生活并应用于现实生活3)数学是丰富多彩的而不是枯燥无味的三、教学对象及学习需要分析1、教学对象分析:1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。2)对归纳假设较弱,应加强这方面教学2、学习需要分析:四.教学策略选择与设计1.课前复习1)复习等差数列的概念及通向公式2)复习指数函数及其图像和性质2.情景导入高中数学教学设计12教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1、集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1、简介数集的发展,复习公约数和最小公倍数,质数与和数;2、教材中的章头引言;3、集合论的创始人——康托尔(德国数学家)(见附录);4、“物以类聚”,“人以群分”;5、教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的'?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集、集合中的每个对象叫做这个集合的元素、定义:一般地,某些指定的对象集在一起就成为一个集合、1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N_或N+(3)整数集:全体整数的集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N_或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z_3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A.B.C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写三、练习题:1、教材P5练习1、22、下列各组对象能确定一个集合吗?(1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5、(有重复)3、设a,b是非零实数,那么可能取的值组成集合的元素是_—2,0,2__4、由实数_,—_,|_|,所组成的集合,最多含(A)(A)2个元素(B)3个元素(C)4个元素(D)5个元素5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:(1)当_∈N时,_∈G;(2)若_∈G,y∈G,则_+y∈G,而不一定属于集合G证明(1):在a+b(a∈Z,b∈Z)中,令a=_∈N,b=0,则_=_+0_=a+b∈G,即_∈G证明(2):∵_∈G,y∈G,∴_=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)∴_+y=(a+b)+(c+d)=(a+c)+(b+d)∵a∈Z,b∈Z,c∈Z,d∈Z∴(a+c)∈Z,(b+d)∈Z∴_+y=(a+c)+(b+d)∈G,又∵=且不一定都是整数,∴=不一定属于集合G四、小结:本节课学习了以下内容:1、集合的有关概念:(集合、元素、属于、不属于)2、集合元素的性质:确定性,互异性,无序性3、常用数集的定义及记法五、课后作业:六、板书设计(略)七、课后记:八、附录:康托尔简介发疯了的数学家康托尔(GeorgCantor,1845—1918)是德国数学家,集合论的1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷康托尔11岁时移居德国,在德国读中学1862年17岁时入瑞士苏黎世大学,翌年入柏林大学,主修数学,1866年曾去格丁根学习一学期1867年以数论方面的论文获博士学位1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教授,1879年任教授由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”来自数学_们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神_症,被送进精神病医院真金不怕火炼,康托尔的思想终于大放光彩1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦1918年1月6日,康托尔在一家精神病院去世集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的兴趣康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较完善的集合理论,为现代数学的发展打下了坚实的基础康托尔创立了集合论作为实数理论,以至整个微积分理论体系的基础从而解决17世纪牛顿(I.Newton,1642—1727)与莱布尼茨(G.W.Leibniz,1646—1716)创立微积分理论体系之后,在近一二百年时间里,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789—1857)、魏尔斯特拉斯(K.Weierstrass,1815—1897)等人进行的微积分理论严格化所建立的极限理论克隆尼克(L.Kronecker,1823—1891),康托尔的老师,对康托尔表现了无微不至的关怀他用各种用得上的尖刻语言,粗暴地、连续不断地攻击康托尔达十年之久他甚至在柏林大学的学生面前公开攻击康托尔横加阻挠康托尔在柏林得到一个薪金较高、声望更大的教授职位使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折法国数学家彭加勒(H.Poi—ncare,1854—1912):我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西集合论是一个有趣的“病理学的情形”,后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了德国数学家魏尔(C.H、Her—mannWey1,1885—1955)认为,康托尔关于基数的等级观点是雾上之雾菲利克斯、克莱因(F.Klein,1849—1925)不赞成集合论的思想数学家H.A.施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去变得很自卑,甚至怀疑自己的工作是否可靠他请求哈勒大学_把他的数学教授职位改为哲学教授职位健康状况逐渐恶化,1918年,他在哈勒大学附属精神病院去世流星埃、伽罗华(E、Galois,1811—1832),法国数学家伽罗华17岁时,就着手研究数学中最困难的问题之一一般π次方程求解问题许多数学家为之耗去许多精力,但都失败了直到1770年,法国数学家拉格朗日对上述问题的研究才算迈出重要的一步伽罗华在前人研究成果的基础上,利用群论的方法从系统结构的整体上彻底解决了根式解的难题他从拉格朗日那里学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化成或者归结为置换群及其子群结构的分析上同时创立了具有划时代意义的数学分支——群论,数学发展作出了重大贡献1829年,他把关于群论研究所初步结果的第一批论文提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了以参加科学院的数学大奖评选,论文寄给当时科学院终身秘书J.B、傅立叶,但傅立叶在当年5月就去世了,在他的遗物中未能发现伽罗华的手稿1831年1月伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院这篇论文是伽罗华关于群论的重要著作当时的数学家S.K、泊松为了理解这篇论文绞尽了脑汁尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它1832年5月30日,临死的前一夜,他把他的重大科研成果匆忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类1832年5月31日离开了人间死因参加无意义的决斗受重伤1846年,他死后14年,法国数学家刘维尔着手整理伽罗华的重大创作后,首次发表于刘维尔主编的《数学杂志》高中数学教学设计13一、课题:人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》二、指导思想与理论依据:《数学课程标准》指出:高中数学课程应讲清一些基本内容的实际背景和应用价值,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肿瘤护理中的有效沟通
- 直肠恶性肿瘤内科诊疗体系
- 全国中医护理骨干人才汇报
- 行政制度新人培训
- 开户云五期培训
- 护理标识管理规章制度
- 幼儿教师音乐乐理培训
- 木材采购保密及森林资源保护协议
- 车辆收费员招聘与管理服务协议
- 高端草莓采摘园与旅行社定制旅游合同范本
- 7数沪科版期末考试卷-2024-2025学年七年级(初一)数学下册期末考试模拟卷04
- 胃管置入术考试题及答案
- 郑州大学cad期末考试试题及答案
- 2025年内蒙古高考物理试卷(含答案)
- 保利大剧院面试题及答案
- 吉林省吉林市名校2025年七下英语期末考试模拟试题含答案
- 2025届福建省厦门市名校数学七下期末质量检测试题含解析
- 北京社工考试题及答案
- DB62T 3081-2022 绿色建筑工程验收标准
- 2023-2024学年山东省青岛市西海岸高一下学期期末学业水平检测数学试题(解析版)
- 食品供应商协议合同模板
评论
0/150
提交评论