机械制造技术:加工后存在的误差_第1页
机械制造技术:加工后存在的误差_第2页
机械制造技术:加工后存在的误差_第3页
机械制造技术:加工后存在的误差_第4页
机械制造技术:加工后存在的误差_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

机械制造技术:加工后存在的误差(一)工件残余应力引起的误差1、基本概念没有外力作用而存在于零件内部的应力,称为残余应力(又称内应力)。工件上一旦产生内应力之后,就会使工件金属处于一种高能位的不稳定状态,它本能地要向低能位的稳定状态转化,并伴随有变形发生,从而使工件丧失原有的加工精度。2、内应力的产生热加工中内应力的产生,在热处理工序中由于工件壁厚不均匀、冷却不均、金相组织的转变等原因,使工件产生内应力。上图示一个内外壁厚相差较大的铸件。浇铸后,铸件将逐渐冷却至室温。由于壁1和壁2比较薄,散热较易,所以冷却比较快。壁3比较厚,所以冷却比较慢。当壁1和壁2从塑性状态冷到弹性状态时,壁3的温度还比较高,尚处于塑性状态。所以壁1和壁2收缩时壁3不起阻挡变形的作用,铸件内部不产生内应力。但当壁3也冷却到弹性状态时,壁1和壁2的温度已经降低很多,收缩速度变得很慢。但这时壁3收缩较快,就受到了壁1和壁2的阻碍。因此,壁3受拉应力的作用,壁1和2受压应力作用,形成了相互平衡的状态。如果在这个铸件的壁1上开一个口,则壁1的压应力消失,铸件在壁3和2的内应力作用下,壁3收缩,壁2伸长,铸件就发生弯曲变形,直至内应力重新分布达到新的平衡为止。推广到一般情况,各种铸件都难免产生冷却不均匀而形成的内应力,铸件的外表面总比中心部分冷却得快。特别是有些铸件(如机床床身),为了提高导轨面的耐磨性,采用局部激冷的工艺使它冷却更快一些,以获得较高的硬度,这样在铸件内部形成的内应力也就更大些。若导轨表面经过粗加工剥去一些金属,这就象在图中的铸件壁1上开口一样,必将引起内应力的重新分布并朝着建立新的应力平衡的方向产生弯曲变形。为了克服这种内应力重新分布而引起的变形,特别是对大型和精度要求高的零件,一般在铸件粗加工后安排进行时效处理,然后再作精加工。冷校直产生的内应力丝杠一类的细长轴经过车削以后,棒料在轧制中产生的内应力要重新分布,产生弯曲,如上图示。冷校直就是在原有变形的相反方向加力F,使工件向反方向弯曲,产生塑性变形,以达到校直的目的。在F力作用下,工件内部的应力分布如图b所示。当外力F去除以后,弹性变形部分本来可以完成恢复而消失,但因塑性变形部分恢复不了,内外层金属就起了互相牵制的作用,产生了新的内应力平衡状态,如图c所示,所以说,冷校直后的工件虽然减少了弯曲,但是依然处于不稳定状态,还会产生新的弯曲变形。3、减小内应力变形误差的途径1.改进零件结构——设计零件时,尽量做到壁厚均匀,结构对称,以减少内应力的产生。2.增设消除内应力的热处理工序1)高温时效:缓慢均匀的冷却,适用于铸、锻、焊件;2)低温时效:缓慢均匀的冷却,适用于半精加工后的工件,主要是消除工件的表面应力;3)自然时效:自然释放;3.合理安排工艺过程——粗加工和精加工宜分阶段进行,使工件在粗加工后有一定的时间来松弛内应力。(二)测量误差:1、量具本身的制造误差;2、测量条件引起的误差:1)冷却后测量与加工后马上测量尺寸有变化;2)测量力的变化也引起测量尺寸的变化。三、加工误差的统计分析前面对影响加工精度的各种主要因素进行了讨论,从分析方法上来讲,这是属于局部的、单因素的。而实际生产中影响加工精度是多因素的、是错综复杂的。用单因素估算法去分析因果关系是难以说明的。为此,生产中常采用统计分析法,通过对一批工件进行检查测量,将所测得的数据进行处理与分析,找出误差分布与变化的规律,从而找出解决问题的途径。(一)、加工误差的分类加工误差按其性质的不同,可分为系统误差和随机误差(也称偶然误差)。1、系统误差:包括常值系统误差和变值系统误差。(1)常值系统误差:定义:在连续加工一批工件中,其加工误差的大小和方向都保持不变或基本不变的系统误差,称为常值系统误差。例如:原理误差,机床、刀具、夹具、量具的制造误差,工艺系统静力变形等原始误差,都属于常值系统误差。如铰刀的直径偏大0.02mm,加工后一批孔的尺寸也都偏大0.02mm。特点:①与加工(顺序)时间无关;②预先可以估计;③较易完全消除;④不会引起工件尺寸波动(常值系统误差对于同批工件的影响是一致的,不会引起各工件之间的差异);⑤不影响尺寸分布曲线形状。(2)变值系统误差:定义:在连续加工一批工件中,其加工误差的大小和方向按一定规律变化的系统误差,称为变值系统误差。例如:刀具的正常磨损引起的加工误差,其大小随加工时间而有规律地变化,属于变值系统误差。特点:①与加工(顺序)时间有关;②预先可以估计;③较难完全消除;④会造成工件尺寸的增大或减小(变值系统误差虽然会引起同批工件之间的差异,但是按照一定的规律而依次变化的,不会造成忽大忽小的波动);⑤影响尺寸分布曲线形状。注意1:工艺系统的热变形,在温升过程中,一般将引起变值系统误差,在达到热平衡后,则又引起常值系统误差。2、随机误差:定义:在连续加工一批工件中,其加工误差的大小和方向是无规则地变化着的,这样的误差称为随机误差。例如:毛坯误差(加工余量不均匀,材料硬度不均匀等)的复映、定位误差、夹紧误差(夹紧力时大时小)、工件内应力等因素都是变化不定的,都是引起随机误差的原因。特点:①预先不能估计到;②较难完全消除,只能减小到最小限度;③工件尺寸忽大忽小,造成一批工件的尺寸分散(在一定的加工条件下随机误差的数值总在一定范围内波动)。注意2:随机误差和系统误差的划分也不是绝对的,它们之间既有区别又有联系。例如:加工一批零件时,如果是在机床一次调整中完成的,则机床的调整误差引起常值系统误差;如果是经过若干次调整完成的,则调整误差就引起随机误差了。注意3:误差性质不同,解决的途径也不同。对于常值系统误差误差,若能掌握其大小和方向。就可以通过调整消除;对于变值系统误差,若能掌握其大小和方向随时间变化的规律,则可通过自动补偿消除;惟对随机误差,只能缩小它们的变动范围,而不可能完全消除。(二)、加工误差的统计分析常用的统计分析法有两种:分布曲线法和点图法。?(一)分布曲线法1、实际分布曲线(直方图):1)样本和样本容量:样本:采用调整法成批加工某种零件,随机抽取其中一定数量(50~100)进行测量,抽取的这批零件称为样本。样本容量:样本的件数称为样本容量。用n表示。2)尺寸分散与尺寸分散范围:由于随机误差和变值系统误差的存在,这些零件加工尺寸的实际数值是各不相同的,这种现象称为尺寸分散。样本尺寸的最大值Xmax与最小值Xmin之差,称为尺寸分散范围。3)分组及组距d:将样本尺寸按大小顺序排列,分成k组,则组距d为:d=(Xmax-Xmin)/k,分组数k的选定表如下:4)频数m:同一尺寸间隔的零件数量,称为频数,用m表示。5)频率f:频数m与样本容量n之比,称为频率。用f表示。即:f=m/n6)实际分布曲线(直方图):以工件尺寸(或误差)为横坐标,以频数或频率作纵坐标,即可作出该批零件加工尺寸的等宽直方图。2、正态分布曲线:实践和理论分析表明,当用调整法加工一批总数极多的而且这些误差因素中又都没有任何优势的倾向时,其分布服从正态分布曲线(又称高斯曲线),见上图(b)。(1)正态分布的曲线方程:当采用该曲线代表加工尺寸的实际分布曲线时,上式各参数的意义为:式中——分布曲线的纵坐标,表示工件的分布密度;——分布曲线的横坐标,表示工件的尺寸或误差;——工件的平均尺寸(分散中心),=;——工序的标准偏差(均方根误差),σ=;n——一批工件的数目(样本数)。(2)正态分布曲线的特点:1)均值α:决定正态分布曲线的中心位置,且在其左右对称:当X=α时,是曲线Y的最大值,即:2)标准偏差σ是决定曲线形状的参数:?σ值增大,则Ymax减小,曲线将趋于平坦,尺寸分散性越大;相反,σ值越小,则曲线瘦高,尺寸分散性越小。故σ值表明了一批工件加工精度的高低(σ值小,Ymax值大,加工精度高)。σ的大小完全由随机误差所决定。3)正态分布曲线与横坐标轴没有交点,即Y≠0:说明工件尺寸分散有一定范围。4)分布曲线下所包含的全部面积代表一批加工零件,即100%零件的实际尺寸都在这一分布范围内。对于正态分布曲线来说,由α到X曲线下的面积由下式决定:当X-α=3σ时,则:2A=0.9973=99.73%,即工件尺寸在±3σ以外的频率只占0.27%,可以忽略不计。因此,一般都取正态分布曲线的分散范围为土3σ。正态分布曲线下的面积函数利用正态分布曲线计算产品合格率3、分布曲线的应用1)判别加工误差的性质:假如加工过程中没有△变,那么其尺寸分布应服从正态分布,这是判别加工误差性质的基本方法。Ⅰ)实际分布曲线与正态分布曲线基本相符,说明加工过程中没有△变;Ⅱ)根据平均值X是否与公差带中心重合,来判断是否存在△常:平均值X与公差带中心重合,说明不存在△常;平均值X与公差带中心不重合,说明存在△常。Ⅲ)△常仅影响平均值X,即只影响分布曲线的位置。符合正态分布;δ≥6σ;且尺寸分布中心与公差带中心重合。说明:加工条件正常、△系几乎不存在,△随小,加工过程中无废品出现,工序精度满足要求。符合正态分布;δ≥6σ;但尺寸分布中心与公差带中心不重合,存在△常。说明:△变几乎不存在,△随小,有突出的△常存在。它主要是由于刀具安装调整不准而造成的。在这种情况下,即使出现了废品也是可以通过调整加以避免的(调整刀具起始加工位置,消除△常)。符合正态分布,δ<6σ,且尺寸分布中心与公差带中心不重合。说明:△变几乎不存在,存在突出的△常,△随较大。即使通过刀具调整消除了△常,也不能完全避免废品的产生。工序精度不能满足工件加工精度的要求。应换用一种比现用工序更精确的加工方法来完成加工(即减小工序σ值)。例如将车削加工换成磨削加工,将扩孔加工换成铰孔等。Ⅳ)实际分布曲线不符合正态分布时,如出现的分布曲线呈平顶分布、双峰分布或偏态分布时,说明加工过程中有突出的△变存在。机加工误差分布规律平顶分布在影响机械加工中的诸多误差因素中,如果刀具线性磨损的影响显著,则工件的尺寸误差将呈现平顶分布。平顶误差分布曲线可以看成是随时间而平移的众多正态误差分布曲线组合的结果。

双峰分布

同一工序的加工内容中,由两台机床来同时完成,由于这两台机床的调整尺寸不尽相同,两台机床的精度状态也有差异,若将这两台机床所加工的工件混在一起,则工件的尺寸误差就呈双峰分布。

偏态分布

在用试切法车削轴径或孔径时,由于操作者为了尽量避免产生不可修复的废品,主观地(而不是随机地)使轴颈加工得宁大勿小,则它们得尺寸误差就呈偏态分布。

2)确定工艺能力及其等级Ⅰ)工艺能力:是指工序处于稳定状态时,加工误差正常波动的幅度。例如:加工尺寸服从正态分布时,其尺寸分散范围应是6σ,所以工艺能力就是6σ。Ⅱ)工艺能力等级:以工艺能力系数Cp来表示,Cp代表了工艺能满足加工精度的程度。其值按下式计算:Cp=δ/6σ式中:δ为工件尺寸公差。根据工艺能力系数的大小,将工艺能力分成5级,其值见教材P209。注:一般情况下,工艺能力不应低于二级。3)估算合格率或不合格率:Q废=0.5-A(二)工艺过程的点图分析应用分布图分析工艺过程精度的前提时工艺过程必须是稳定的。由于点图分析法能够反映质量指标随时间变化的情况,因此,它是进行统计质量控制的有效方法。这种方法既可以用于稳定的工艺过程,也可以用于不稳定的工艺过程。对于一个不稳定的工艺过程来说,要解决的问题是如何在工艺过程的进行中,不断地进行质量指标的主动控制,工艺过程一旦出现被加工工件的质量指标有超出所规定的不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论