安徽省长丰县第二中学2024届高三适应性练习卷数学试题_第1页
安徽省长丰县第二中学2024届高三适应性练习卷数学试题_第2页
安徽省长丰县第二中学2024届高三适应性练习卷数学试题_第3页
安徽省长丰县第二中学2024届高三适应性练习卷数学试题_第4页
安徽省长丰县第二中学2024届高三适应性练习卷数学试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省长丰县第二中学2024届高三适应性练习卷数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,,,则边上的高为()A. B.2 C. D.2.已知,,,则的大小关系为()A. B. C. D.3.如图示,三棱锥的底面是等腰直角三角形,,且,,则与面所成角的正弦值等于()A. B. C. D.4.设,随机变量的分布列是01则当在内增大时,()A.减小,减小 B.减小,增大C.增大,减小 D.增大,增大5.国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是()A.12个月的PMI值不低于50%的频率为B.12个月的PMI值的平均值低于50%C.12个月的PMI值的众数为49.4%D.12个月的PMI值的中位数为50.3%6.的展开式中的系数是-10,则实数()A.2 B.1 C.-1 D.-27.若,,,点C在AB上,且,设,则的值为()A. B. C. D.8.已知函数,若对任意,都有成立,则实数的取值范围是()A. B. C. D.9.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A. B. C. D.10.已知复数(1+i)(a+i)为纯虚数(i为虚数单位),则实数a=()A.-1 B.1 C.0 D.211.已知数列为等差数列,为其前项和,,则()A.7 B.14 C.28 D.8412.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=﹣x﹣2,则()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)二、填空题:本题共4小题,每小题5分,共20分。13.(5分)在长方体中,已知棱长,体对角线,两异面直线与所成的角为,则该长方体的表面积是____________.14.已知等差数列的各项均为正数,,且,若,则________.15.已知平面向量,的夹角为,且,则=____16.在中,角A,B,C的对边分别为a,b,c,且,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)第十三届全国人大常委会第十一次会议审议的《固体废物污染环境防治法(修订草案)》中,提出推行生活垃圾分类制度,这是生活垃圾分类首次被纳入国家立法中.为了解某城市居民的垃圾分类意识与政府相关法规宣传普及的关系,对某试点社区抽取户居民进行调查,得到如下的列联表.分类意识强分类意识弱合计试点后试点前合计已知在抽取的户居民中随机抽取户,抽到分类意识强的概率为.(1)请将上面的列联表补充完整,并判断是否有的把握认为居民分类意识的强弱与政府宣传普及工作有关?说明你的理由;(2)已知在试点前分类意识强的户居民中,有户自觉垃圾分类在年以上,现在从试点前分类意识强的户居民中,随机选出户进行自觉垃圾分类年限的调查,记选出自觉垃圾分类年限在年以上的户数为,求分布列及数学期望.参考公式:,其中.下面的临界值表仅供参考18.(12分)已知函数,,且.(1)当时,求函数的减区间;(2)求证:方程有两个不相等的实数根;(3)若方程的两个实数根是,试比较,与的大小,并说明理由.19.(12分)在四棱锥中,底面是平行四边形,底面.(1)证明:;(2)求二面角的正弦值.20.(12分)在中,角A、B、C的对边分别为a、b、c,且.(1)求角A的大小;(2)若,的平分线与交于点D,与的外接圆交于点E(异于点A),,求的值.21.(12分)某市计划在一片空地上建一个集购物、餐饮、娱乐为一体的大型综合园区,如图,已知两个购物广场的占地都呈正方形,它们的面积分别为13公顷和8公顷;美食城和欢乐大世界的占地也都呈正方形,分别记它们的面积为公顷和公顷;由购物广场、美食城和欢乐大世界围成的两块公共绿地都呈三角形,分别记它们的面积为公顷和公顷.(1)设,用关于的函数表示,并求在区间上的最大值的近似值(精确到0.001公顷);(2)如果,并且,试分别求出、、、的值.22.(10分)已知函数(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)若在上恒成立,求实数的取值范围;(Ⅲ)若数列的前项和,,求证:数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得边长,由此求得边上的高.【详解】过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为.故选:C【点睛】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.2、A【解析】

根据指数函数与对数函数的单调性,借助特殊值即可比较大小.【详解】因为,所以.因为,所以,因为,为增函数,所以所以,故选:A.【点睛】本题主要考查了指数函数、对数函数的单调性,利用单调性比较大小,属于中档题.3、A【解析】

首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,,可知,,同时易知,,所以面,故即为与面所成角,有,故.故选:A.【点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.4、C【解析】

,,判断其在内的单调性即可.【详解】解:根据题意在内递增,,是以为对称轴,开口向下的抛物线,所以在上单调递减,故选:C.【点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题.5、D【解析】

根据图形中的信息,可得频率、平均值的估计、众数、中位数,从而得到答案.【详解】对A,从图中数据变化看,PMI值不低于50%的月份有4个,所以12个月的PMI值不低于50%的频率为,故A正确;对B,由图可以看出,PMI值的平均值低于50%,故B正确;对C,12个月的PMI值的众数为49.4%,故C正确,;对D,12个月的PMI值的中位数为49.6%,故D错误故选:D.【点睛】本题考查频率、平均值的估计、众数、中位数计算,考查数据处理能力,属于基础题.6、C【解析】

利用通项公式找到的系数,令其等于-10即可.【详解】二项式展开式的通项为,令,得,则,所以,解得.故选:C【点睛】本题考查求二项展开式中特定项的系数,考查学生的运算求解能力,是一道容易题.7、B【解析】

利用向量的数量积运算即可算出.【详解】解:,,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.8、D【解析】

先将所求问题转化为对任意恒成立,即得图象恒在函数图象的上方,再利用数形结合即可解决.【详解】由得,由题意函数得图象恒在函数图象的上方,作出函数的图象如图所示过原点作函数的切线,设切点为,则,解得,所以切线斜率为,所以,解得.故选:D.【点睛】本题考查导数在不等式恒成立中的应用,考查了学生转化与化归思想以及数形结合的思想,是一道中档题.9、C【解析】

如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选C.考点:外接球表面积和椎体的体积.10、B【解析】

化简得到z=a-1+a+1【详解】z=1+ia+i=a-1+a+1i为纯虚数,故a-1=0故选:B.【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.11、D【解析】

利用等差数列的通项公式,可求解得到,利用求和公式和等差中项的性质,即得解【详解】,解得..故选:D【点睛】本题考查了等差数列的通项公式、求和公式和等差中项,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.12、B【解析】

根据函数的周期性以及x∈[﹣3,﹣2]的解析式,可作出函数f(x)在定义域上的图象,由此结合选项判断即可.【详解】由f(x+2)=f(x),得f(x)是周期函数且周期为2,先作出f(x)在x∈[﹣3,﹣2]时的图象,然后根据周期为2依次平移,并结合f(x)是偶函数作出f(x)在R上的图象如下,选项A,,所以,选项A错误;选项B,因为,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),选项B正确;选项C,,所以,即,选项C错误;选项D,,选项D错误.故选:B.【点睛】本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、10【解析】

作出长方体如图所示,由于,则就是异面直线与所成的角,且,在等腰直角三角形中,由,得,又,则,从而长方体的表面积为.14、【解析】

设等差数列的公差为,根据,且,可得,解得,进而得出结论.【详解】设公差为,因为,所以,所以,所以故答案为:【点睛】本题主要考查了等差数列的通项公式、需熟记公式,属于基础题.15、1【解析】

根据平面向量模的定义先由坐标求得,再根据平面向量数量积定义求得;将化简并代入即可求得.【详解】,则,平面向量,的夹角为,则由平面向量数量积定义可得,根据平面向量模的求法可知,代入可得,解得,故答案为:1.【点睛】本题考查了平面向量模的求法及简单应用,平面向量数量积的定义及运算,属于基础题.16、【解析】

利用正弦定理将边化角,即可容易求得结果.【详解】由正弦定理可知,,即.故答案为:.【点睛】本题考查利用正弦定理实现边角互化,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有的把握认为居民分类意识强与政府宣传普及工作有很大关系.见解析(2)分布列见解析,期望为1.【解析】

(1)由在抽取的户居民中随机抽取户,抽到分类意识强的概率为可得列联表,然后计算后可得结论;(2)由已知的取值分别为,分别计算概率得分布列,由公式计算出期望.【详解】解:(1)根据在抽取的户居民中随机抽取户,到分类意识强的概率为,可得分类意识强的有户,故可得列联表如下:分类意识强分类意识弱合计试点后试点前合计因为的观测值,所以有的把握认为居民分类意识强与政府宣传普及工作有很大关系.(2)现在从试点前分类意识强的户居民中,选出户进行自觉垃圾分类年限的调查,记选出自觉垃圾分类年限在年以上的户数为,则0,1,2,3,故,,,,则的分布列为.【点睛】本题考查独立性检验,考查随机变量的概率分布列和数学期望.考查学生的数据处理能力和运算求解能力.18、(1)(2)详见解析(3)【解析】

试题分析:(1)当时,,由得减区间;(2)因为,所以,因为所以,方程有两个不相等的实数根;(3)因为,,所以试题解析:(1)当时,,由得减区间;(2)法1:,,,所以,方程有两个不相等的实数根;法2:,,是开口向上的二次函数,所以,方程有两个不相等的实数根;(3)因为,,又在和增,在减,所以.考点:利用导数求函数减区间,二次函数与二次方程关系19、(1)见解析(2)【解析】

(1)利用正弦定理求得,由此得到,结合证得平面,由此证得.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值,再转化为正弦值.【详解】(1)在中,由正弦定理可得:,,底面,平面,;(2)以为坐标原点建立如图所示的空间直角坐标系,,设平面的法向量为,由可得:,令,则,设平面的法向量为,由可得:,令,则,设二面角的平面角为,由图可知为钝角,则,,故二面角的正弦值为.【点睛】本小题主要考查线线垂直的证明,考查空间向量法求二面角,考查空间想象能力和逻辑推理能力,属于中档题.20、(1);(2)【解析】

(1)由,利用正弦定理转化整理为,再利用余弦定理求解.(2)根据,利用两角和的余弦得到,利用数形结合,设,在中,由正弦定理求得,在中,求得再求解.【详解】(1)因为,所以,即,即,所以.(2)∵,.所以,从而.所以,.不妨设,O为外接圆圆心则AO=1,,.在中,由正弦定理知,有.即;在中,由,,从而.所以.【点睛】本题主要考查平面向量的模的几何意义,还考查了数形结合的方法,属于中档题.21、(1),最大值公顷;(2)17、25、5、5.【解析】

(1)由余弦定理求出三角形ABC的边长BC,进而可以求出,,由面积公式求出,,即可求出,并求出最值;(2)由(1)知,,,即可求出、,再算出,代入(1)中表达式求出,。【详解】(1)由余弦定理得,,所以,,同理可得又,所以,故在区间上的最大值为,近似值为。(2)由(1)知,,,所以,进而,由知,,,故、、、的值分别是17、25、5、5。【点睛】本题主要考查利用余弦定理解三角形以及同角三角函数平方关系的应用,意在考查学生的数学建模以及数学运算能力。22、(Ⅰ);(Ⅱ);(Ⅲ)证明见解析.【解析】试题分析:将,求出切线方程求导后讨论当时和时的单调性证明,求出实数的取值范围先求出、的通项公式,利用当时,得,下面证明:解析:(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论