版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年四川省广安市邻水实验学校高三下学期第三次考试数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元2.已知函数,集合,,则()A. B.C. D.3.记为等差数列的前项和.若,,则()A.5 B.3 C.-12 D.-134.已知函数,,若总有恒成立.记的最小值为,则的最大值为()A.1 B. C. D.5.已知某几何体的三视图如右图所示,则该几何体的体积为()A.3 B. C. D.6.已知集合,,则()A. B.C.或 D.7.复数在复平面内对应的点为则()A. B. C. D.8.存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是()A. B. C. D.9.已知向量,满足,在上投影为,则的最小值为()A. B. C. D.10.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是()A.甲的数据分析素养优于乙 B.乙的数据分析素养优于数学建模素养C.甲的六大素养整体水平优于乙 D.甲的六大素养中数学运算最强11.函数f(x)=lnA. B. C. D.12.是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.“六艺”源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“礼”与“乐”必须排在前两节,“射”和“御”两讲座必须相邻的不同安排种数为________.14.已知为正实数,且,则的最小值为____________.15.已知,,分别为内角,,的对边,,,,则的面积为__________.16.如图是一个算法流程图,若输出的实数的值为,则输入的实数的值为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,求的最小值.18.(12分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.19.(12分)已知抛物线:()上横坐标为3的点与抛物线焦点的距离为4.(1)求p的值;(2)设()为抛物线上的动点,过P作圆的两条切线分别与y轴交于A、B两点.求的取值范围.20.(12分)设等比数列的前项和为,若(Ⅰ)求数列的通项公式;(Ⅱ)在和之间插入个实数,使得这个数依次组成公差为的等差数列,设数列的前项和为,求证:.21.(12分)的内角A,B,C的对边分别为a,b,c,已知,.求C;若,求,的面积22.(10分)已知椭圆与x轴负半轴交于,离心率.(1)求椭圆C的方程;(2)设直线与椭圆C交于两点,连接AM,AN并延长交直线x=4于两点,若,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.2.C【解析】
分别求解不等式得到集合,再利用集合的交集定义求解即可.【详解】,,∴.故选C.【点睛】本题主要考查了集合的基本运算,难度容易.3.B【解析】
由题得,,解得,,计算可得.【详解】,,,,解得,,.故选:B【点睛】本题主要考查了等差数列的通项公式,前项和公式,考查了学生运算求解能力.4.C【解析】
根据总有恒成立可构造函数,求导后分情况讨论的最大值可得最大值最大值,即.根据题意化简可得,求得,再换元求导分析最大值即可.【详解】由题,总有即恒成立.设,则的最大值小于等于0.又,若则,在上单调递增,无最大值.若,则当时,,在上单调递减,当时,,在上单调递增.故在处取得最大值.故,化简得.故,令,可令,故,当时,,在递减;当时,,在递增.故在处取得极大值,为.故的最大值为.故选:C【点睛】本题主要考查了根据导数求解函数的最值问题,需要根据题意分析导数中参数的范围,再分析函数的最值,进而求导构造函数求解的最大值.属于难题.5.B【解析】由三视图知:几何体是直三棱柱消去一个三棱锥,如图:
直三棱柱的体积为,消去的三棱锥的体积为,
∴几何体的体积,故选B.点睛:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键;几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积.6.D【解析】
首先求出集合,再根据补集的定义计算可得;【详解】解:∵,解得∴,∴.故选:D【点睛】本题考查补集的概念及运算,一元二次不等式的解法,属于基础题.7.B【解析】
求得复数,结合复数除法运算,求得的值.【详解】易知,则.故选:B【点睛】本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.8.D【解析】
根据题意利用垂直直线斜率间的关系建立不等式再求解即可.【详解】因为过点M椭圆的切线方程为,所以切线的斜率为,由,解得,即,所以,所以.故选:D【点睛】本题主要考查了建立不等式求解椭圆离心率的问题,属于基础题.9.B【解析】
根据在上投影为,以及,可得;再对所求模长进行平方运算,可将问题转化为模长和夹角运算,代入即可求得.【详解】在上投影为,即又本题正确选项:【点睛】本题考查向量模长的运算,对于含加减法运算的向量模长的求解,通常先求解模长的平方,再开平方求得结果;解题关键是需要通过夹角取值范围的分析,得到的最小值.10.D【解析】
根据所给的雷达图逐个选项分析即可.【详解】对于A,甲的数据分析素养为100分,乙的数据分析素养为80分,故甲的数据分析素养优于乙,故A正确;对于B,乙的数据分析素养为80分,数学建模素养为60分,故乙的数据分析素养优于数学建模素养,故B正确;对于C,甲的六大素养整体水平平均得分为,乙的六大素养整体水平均得分为,故C正确;对于D,甲的六大素养中数学运算为80分,不是最强的,故D错误;故选:D【点睛】本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题.11.C【解析】因为fx=lnx2-4x+4x-23=12.B【解析】
分别判断充分性和必要性得到答案.【详解】所以(逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
分步排课,首先将“礼”与“乐”排在前两节,然后,“射”和“御”捆绑一一起作为一个元素与其它两个元素合起来全排列,同时它们内部也全排列.【详解】第一步:先将“礼”与“乐”排在前两节,有种不同的排法;第二步:将“射”和“御”两节讲座捆绑再和其他两艺全排有种不同的排法,所以满足“礼”与“乐”必须排在前两节,“射”和“御”两节讲座必须相邻的不同安排种数为.故答案为:1.【点睛】本题考查排列的应用,排列组合问题中,遵循特殊元素特殊位置优先考虑的原则,相邻问题用捆绑法,不相邻问题用插入法.14.【解析】
,所以有,再利用基本不等式求最值即可.【详解】由已知,,所以,当且仅当,即时,等号成立.故答案为:【点睛】本题考查利用基本不等式求和的最小值问题,采用的是“1”的替换,也可以消元等,是一道中档题.15.【解析】
根据题意,利用余弦定理求得,再运用三角形的面积公式即可求得结果.【详解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面积.故答案为:.【点睛】本题考查余弦定理的应用和三角形的面积公式,考查计算能力.16.【解析】
根据程序框图得到程序功能,结合分段函数进行计算即可.【详解】解:程序的功能是计算,若输出的实数的值为,则当时,由得,当时,由,此时无解.故答案为:.【点睛】本题主要考查程序框图的识别和判断,理解程序功能是解决本题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.【解析】
讨论和的情况,然后再分对称轴和区间之间的关系,最后求出最小值【详解】当时,,它在上是减函数故函数的最小值为当时,函数的图象思维对称轴方程为当时,,函数的最小值为当时,,函数的最小值为当时,,函数的最小值为综上,【点睛】本题主要考查了二次函数在闭区间上的最值,二次函数的性质的应用,体现了分类讨论的数学思想,属于中档题。18.(1)单调递增区间为,单调递减区间为;(2)【解析】
(1),令,解不等式即可;(2),令得,即,且的最小值为,令,结合即可解决.【详解】(1),当时,,递增,当时,,递减.故的单调递增区间为,单调递减区间为.(2),,,设的根为,即有可得,,当时,,递减,当时,,递增.,所以,①当;②当时,设,递增,,所以.综上,.【点睛】本题考查了利用导数研究函数单调性以及函数恒成立问题,这里要强调一点,处理恒成立问题时,通常是构造函数,将问题转化为函数的极值或最值来处理.19.(1);(2)【解析】
(1)根据横坐标为3的点与抛物线焦点的距离为4,由抛物线的定义得到求解.(2)设过点的直线方程为,根据直线与圆相切,则有,整理得:,根据题意,建立,将韦达定理代入求解.【详解】(1)因为横坐标为3的点与抛物线焦点的距离为4,由抛物线的定义得:,解得:.(2)设过点的直线方程为,因为直线与圆相切,所以,整理得:,,由题意得:所以,,因为,所以,所以.【点睛】本题主要考查抛物线的定义及点与抛物线,直线与圆的位置关系,还考查了运算求解的能力,属于中档题.20.(Ⅰ);(Ⅱ)详见解析.【解析】
(Ⅰ),,两式相减化简整理利用等比数列的通项公式即可得出.(Ⅱ)由题设可得,可得,利用错位相减法即可得出.【详解】解:(Ⅰ)因为,故,两式相减可得,,故,因为是等比数列,∴,又,所以,故,所以;(Ⅱ)由题设可得,所以,所以,①则,②①-②得:,所以,得证.【点睛】本题考查了数列递推关系、等比数列的通项公式求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.21.(1).(2).【解析】
由已知利用正弦定理,同角三角函数基本关系式可求,结合范围,可求,由已知利用二倍角的余弦函数公式可得,结合范围,可求A,根据三角形的内角和定理即可解得C的值.由及正弦定理可得b的值,根据两角和的正弦函数公式可求sinC的值,进而根据三角形的面积公式即可求解.【详解】由已知可得,又由正弦定理,可得,即,,,,即,又,,或舍去,可得,.,,,由正弦定理,可得,,.【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,二倍角的余弦函数公式,三角形的内角和定理,两角和的正弦函数公式,三角形的面积公式等知识在解三角形中的应用,考查了计算能力和转化思想,属于中档题.22.(1)(2)直线恒过定点,详见解析【解析】
(1)依题意由椭圆的简单性质可求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城南旧事听评课记录
- 汕头市潮阳区2024年一级造价工程师《土建计量》高分冲刺试卷含解析
- 山西省朔州市2024年一级造价工程师《土建计量》模拟试题含解析
- 江苏省南通市海门中学2025届高三上学期第二次调研考试政治试卷(含答案)
- 2024年辽宁高三12月联考历史试卷(考后强化版)
- 【大学课件】广告与促销管理
- 劳动的魔力模板
- 《整体管理咨询模板》课件
- 五年级语文教师工作计划模板
- 《调休管理办法》课件
- 羊奶的培训课件
- 2024年中国人寿:养老险总公司招聘笔试参考题库含答案解析
- 阿米巴经营模式解析
- 妇幼保健院管理诊疗规范
- 中国历史五四运动课件
- 《中国古典乐器》课件
- 前台接待礼仪培训课件
- 人音版六年级音乐上册期末试卷(含答案)
- 医院科室医疗质量安全管理持续改进记录本(包括活动记录与科室质控数据监测与统计表格)(模板)
- 麦肯基疗法颈椎-腰椎
- 家具安装垃圾清理方案
评论
0/150
提交评论