2024-2025学年人教高中物理同步讲义练习选择性必修三4.4 氢原子光谱和波尔的原子模型(含答案) (人教2019选择性必修三)_第1页
2024-2025学年人教高中物理同步讲义练习选择性必修三4.4 氢原子光谱和波尔的原子模型(含答案) (人教2019选择性必修三)_第2页
2024-2025学年人教高中物理同步讲义练习选择性必修三4.4 氢原子光谱和波尔的原子模型(含答案) (人教2019选择性必修三)_第3页
2024-2025学年人教高中物理同步讲义练习选择性必修三4.4 氢原子光谱和波尔的原子模型(含答案) (人教2019选择性必修三)_第4页
2024-2025学年人教高中物理同步讲义练习选择性必修三4.4 氢原子光谱和波尔的原子模型(含答案) (人教2019选择性必修三)_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年人教高中物理同步讲义练习选择性必修三4.4氢原子光谱和波尔的原子模型(含答案)(人教2019选择性必修三)4.4氢原子光谱和波尔的原子模型基础导学要点一、氢原子光谱和玻尔的原子模型(一)光谱1.定义:用棱镜或光栅把物质发出的光按波长(频率)展开,获得波长(频率)和强度分布的记录。2.分类(1)线状谱:光谱是一条条的亮线;(2)连续谱:光谱是连在一起的光带。3.特征谱线:气体中中性原子的发光光谱都是线状谱,说明原子只发出几种特定频率的光,不同原子的亮线位置不同,说明不同原子的发光频率不一样,光谱中的亮线称为原子的特征谱线。(二)氢原子光谱的实验规律1.许多情况下光是由原子内部电子的运动产生的,因此光谱是探索原子结构的一条重要途径。2.氢原子光谱的实验规律满足巴耳末公式:eq\f(1,λ)=R∞(eq\f(1,22)-eq\f(1,n2))(n=3,4,5,…)式中R为里德伯常量,R∞=1.10×107m-1,n取整数。3.巴耳末公式的意义:以简洁的形式反映了氢原子的线状光谱的特征。(三)经典理论的困难1.核式结构模型的成就:正确地指出了原子核的存在,很好地解释了α粒子散射实验。2.经典理论的困难:经典物理学既无法解释原子的稳定性,又无法解释原子光谱的分立线状谱。(四)玻尔原子理论的基本假设1.轨道量子化(1)原子中的电子在库仑引力的作用下,绕原子核做圆周运动;(2)电子运行轨道的半径不是任意的,也就是说电子的轨道是量子化的(填“连续变化”或“量子化”);(3)电子在这些轨道上绕核的运动是稳定的,不产生电磁辐射;2.定态(1)当电子在不同的轨道上运动时,原子处于不同的状态,具有不同的能量.电子只能在特定轨道上运动,原子的能量只能取一系列特定的值.这些量子化的能量值叫作能级;(2)原子中这些具有确定能量的稳定状态,称为定态.能量最低的状态称为基态,其他的状态叫作激发态。3.频率条件当电子从能量较高的定态轨道(其能量记为En)跃迁到能量较低的定态轨道(能量记为Em,m<n)时,会放出能量为hν的光子,该光子的能量hν=En-Em,该式称为频率条件,又称辐射条件。要点二、玻尔理论对氢光谱的解释氢原子能级跃迁(一)玻尔理论对氢光谱的解释1.氢原子能级图(如图所示)2.解释巴耳末公式巴耳末公式中的正整数n和2正好代表能级跃迁之前和跃迁之后所处的定态轨道的量子数n和2。3.解释气体导电发光:通常情况下,原子处于基态,非常稳定,气体放电管中的原子受到高速运动的电子的撞击,有可能向上跃迁到激发态,处于激发态的原子是不稳定的,会自发地向能量较低的能级跃迁,放出光子,最终回到基态。4.解释氢原子光谱的不连续性:原子从较高的能级向低能级跃迁时放出的光子的能量等于前后两个能级之差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线。5.解释不同原子具有不同的特征谱线:不同的原子具有不同的结构,能级各不相同,因此辐射(或吸收)的光子频率也不相同。(二)玻尔理论的局限性1.成功之处:玻尔的原子理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱的实验规律;2.局限性:保留了经典粒子的观念,仍然把电子的运动看作经典力学描述下的轨道运动;3.电子云:原子中的电子没有确定的坐标值,我们只能描述某时刻电子在某个位置出现概率的多少,把电子这种概率分布用疏密不同的点表示时,这种图像就像云雾一样分布在原子核周围,故称电子云。要点突破突破一:氢原子光谱和玻尔的原子模型1.光谱的分类2.太阳光谱特点在连续谱的背景上出现一些不连续的暗线,是一种吸收光谱产生原因阳光中含有各种颜色的光,但当阳光透过太阳的高层大气射向地球时,太阳高层大气中含有的元素会吸收它自己特征谱线的光,然后再向四面八方发射出去,到达地球的这些谱线看起来就暗了,这就形成了明亮背景下的暗线3.光谱分析(1)优点:灵敏度高,分析物质的最低量达10-13kg;(2)应用:a.发现新元素;b.鉴别物体的物质成分;(3)用于光谱分析的光谱:线状光谱和吸收光谱。4.氢原子光谱的特点:在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性。5.巴耳末公式(1)巴耳末对氢原子光谱的谱线进行研究得到公式:eq\f(1,λ)=R∞(eq\f(1,22)-eq\f(1,n2))(n=3,4,5,…),该公式称为巴耳末公式.式中R叫作里德伯常量,实验值为R∞=1.10×107m-1。(2)公式中只能取n≥3的整数,不能连续取值,波长是分立的值。突破二:玻尔理论对氢光谱的解释氢原子能级跃迁(一)自发跃迁与受激跃迁的比较1.自发跃迁:①由高能级到低能级,由远轨道到近轨道.②释放能量,放出光子(发光):hν=E初-E末.③大量处于激发态为n能级的原子可能的光谱线条数:eq\f(nn-1,2).2.受激跃迁:①由低能级到高能级,由近轨道到远轨道;②吸收能量eq\b\lc\{\rc\(\a\vs4\al\co1(a.光照射,b.实物粒子碰撞))(二)使原子能级跃迁的两种粒子——光子与实物粒子1.原子若是吸收光子的能量而被激发,则光子的能量必须等于两能级的能量差,否则不被吸收,不存在激发到n能级时能量有余,而激发到n+1能级时能量不足,则可激发到n能级的问题.2.原子还可吸收外来实物粒子(例如,自由电子)的能量而被激发,由于实物粒子的动能可部分地被原子吸收,所以只要入射粒子的能量大于或等于两能级的差值,就可使原子发生能级跃迁.(三)一个氢原子跃迁和一群氢原子跃迁的区别1.一个氢原子跃迁的情况分析①确定氢原子所处的能级,画出能级图。②根据跃迁原理,画出氢原子向低能级跃迁的可能情况示意图。2.一群氢原子跃迁问题的计算①确定氢原子所处激发态的能级,画出跃迁示意图;②运用归纳法,根据数学公式N=Ceq\o\al(2,n)=eq\f(nn-1,2)确定跃迁时辐射出几种不同频率的光子;③根据跃迁能量公式hν=Em-En(m>n)分别计算出各种光子的频率。典例精析题型一:氢原子光谱和玻尔的原子模型例一.下列说法错误的是()A.到达地球表面处的太阳光的光谱是吸收光谱B.一个电子和一个质子具有同样的动量时,它们的德布罗意波波长也相同C.根据海森伯的不确定性关系可知,不可能同时准确地测定微观粒子的位置和动量D.光的双缝干涉现象中,可以用光程差与波长的关系确定屏上某点是亮纹还是暗纹,所以光波不是概率波变式迁移1:如图所示为氢原子的能级图,巴耳末系是吸收光子能量的原子进入激发态()后返回的量子状态时释放出的谱线,下列说法正确的是()A.巴耳末系中的最小频率与最大频率之比B.处于能级的氢原子可以吸收能量为的光子C.一个氢原子从能级向基态跃迁时,可发出6种不同频率的光子D.氢原子由能级跃迁到能级时,原子的电势能增加,产生的电磁波的波长最长题型二:玻尔理论对氢光谱的解释氢原子能级跃迁例二.如图所示是氢原子的能级图,大量处于n=4激发态的氢原子向低能级跃迁时,可以辐射出多种不同频率的光子,其中巴耳末系是指氢原子由高能级向n=2能级跃迁时释放的光子。下列说法正确的是()A.最多可放出6种频率不同的光子,全部属于巴耳末系B.放出的光子中波长最长的是n=4激发态跃迁到n=3激发态时产生的C.放出的光子可能使逸出功为13eV的金属发生光电效应D.用能量为2.56eV的光子照射处于n=2能级的氢原子,可以使它跃迁到n=4能级变式迁移2:如图所示,为氢原子的能级示意图:a表示从能级跃迁到时辐射的光子;b表示从能级跃迁到时辐射的光子;c表示从能级跃迁到时辐射的光子。则以下说法正确的是()A.玻尔的原子能级模型可以解释所有原子辐射光子的规律B.若b光可使某金属发生光电效应,则a光也一定可以C.若有一个处于能级的氢原子向低能级跃迁,则该氢原子只能发出a、b、c三种光子的其中一种D.若有一群处于能级的氢原子向低能级跃迁,则这些氢原子最多可辐射出10种不同频率的光子强化训练选择题1.目前世界上最准确的计时工具就是原子钟,它是20世纪50年代出现的,原子钟是利用原子释放能量时发出的电磁波来计时的。现在用在原子钟里的元素有氢、绝、铷等,其中氢原子的能级图如图所示,现有大量的氢原子处于的激发态,向低能级跃迁时辐射出若干种不同频率的光,下列说法正确的是()A.由能级跃迁到能级产生的光频率最小B.由能级跃迁到能级产生的光能使某金属电离说明光是粒子C.由能级跃迁到能级产生的光最容易发生衍射现象D.最多可以辐射出6种不同频率的光2.下列说法正确的是()A.动能相同的质子和电子,它们的德布罗意波的波长相同B.一个氢原子处在n=4的能级,当它跃迁到较低能级时,最多能辐射出3种频率的光子C.用相同频率的光在相同的条件下先后照射锌板和银板时均有光电子逸出,逸出的光电子动能一定相同D.玻尔将量子观念引入原子领域,成功地解释了氢原子和其他原子光谱的实验规律3、氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中()A.原子要吸收光子,电子的动能增大,原子的电势能增大B.原子要放出光子,电子的动能减小,原子的电势能减小C.原子要吸收光子,电子的动能增大,原子的电势能减小D.原子要吸收光子,电子的动能减小,原子的电势能增大4、如图所示为氢原子的能级示意图,一群氢原子处于的激发态,在自发跃迁中放出一些光子,用这些光子照射逸出功为的钾,下列说法正确的是()A.这些氢原子最多可能发出4种不同频率的光B.这些氢原子发出的所有光子均能使金属钾发生光电效应C.用这些氢原子跃迁放出的光照射金属钾,逸出的光电子最大初动能一定不大于D.氢原子在由高能级向低能级跃迁过程中,核外电子的动能也随之减小5、关于近代物理学史,下列说法正确的是()A.卢瑟福的α粒子散射实验,使人们认识到原子是可以分割的,是由更小的微粒组成的B.光电效应和康普顿效应深入地揭示了光的粒子性的一面C.爱因斯坦最先将能量子概念引入物理学,使得光电效应的理论与实验的矛盾迎刃而解D.玻尔最先将能量子概念引入物理学,提出了定态和跃迁的概念,成功地解释了氢原子光谱的实验规律6、在原子结构的研究方面,科学家前赴后继、不断完善,以下说法错误的是()A.汤姆孙通过对阴极射线的研究发现了电子,使人们认识到原子本身是有结构的B.卢瑟福通过对α粒子散射实验现象的分析提出了原子的核式结构模型,完全否定了汤姆孙的“枣糕模型”C.玻尔把微观世界中物理量取分立值的观念应用到原子系统,提出了自己的原子结构假说,完全否定了核式结构模型D.玻尔的原子理论只成功解释了氢原子光谱的实验规律,这说明了玻尔模型也是有局限性的7、以下物理量中,谁属于“量子化”?()A.温度计测量的温度 B.天平测量的质量C.人所感受到的时间 D.油滴所带电荷量8、如图所示的α粒子散射实验中,少数α粒子发生大角度偏转的原因是()A.α粒子与原子中的电子发生碰撞B.正电荷在原子中均匀分布C.原子中带正电的部分和绝大部分质量集中在一个很小的核上D.原子只能处于一系列不连续的能量状态中9、用a、b两种可见光照射同一光电效应装置,测得的光电流和电压的关系图像如图甲所示,图乙为氢原子的能级图。已知可见光的光子能量在到之间,下列说法正确的是()A.a光的波长比b光的小B.单色光a的光子动量比单色光b的光子动量大C.用大量的光子去照射基态的氢原子可以得到两种可见光D.若a光是氢原子从能级跃迁到能级时发出的光,则b光是氢原子从能级跃迁到能级时发出的光10、(多选)某原子在下列各能级间跃迁:(1)从到;(2)从到;(3)从到。在跃迁过程中辐射出三种颜色光分别为、、,下列说法正确的是()A.通过同一双缝装置产生干涉,干涉条纹最密集,最稀疏B.、、三种颜色的复色光以某一角度从玻璃向空气中入射,在界面处没有光线透射出去,则减小入射角后先透射出去C.如果光能让某种金属恰好发生光电效应,则、光也可以D.三种光在真空中传播的速度相同11、(多选)根据玻尔理论,下列说法正确的是()A.各种原子吸收光谱中的每一条暗线都跟这种原子的发射光谱中的一条亮线相对应B.电子沿某一轨道绕核运动,若其圆周运动的频率是ν,则其发出光子的频率也是νC.若氢原子处于量子数为m(m>1)的定态,则氢原子是稳定的,不辐射光子D.在巴耳末线系中,波长最长的谱线是从量子数n=3的能级跃迁到n=2的能级时发出的4.4氢原子光谱和波尔的原子模型基础导学要点一、氢原子光谱和玻尔的原子模型(一)光谱1.定义:用棱镜或光栅把物质发出的光按波长(频率)展开,获得波长(频率)和强度分布的记录。2.分类(1)线状谱:光谱是一条条的亮线;(2)连续谱:光谱是连在一起的光带。3.特征谱线:气体中中性原子的发光光谱都是线状谱,说明原子只发出几种特定频率的光,不同原子的亮线位置不同,说明不同原子的发光频率不一样,光谱中的亮线称为原子的特征谱线。(二)氢原子光谱的实验规律1.许多情况下光是由原子内部电子的运动产生的,因此光谱是探索原子结构的一条重要途径。2.氢原子光谱的实验规律满足巴耳末公式:eq\f(1,λ)=R∞(eq\f(1,22)-eq\f(1,n2))(n=3,4,5,…)式中R为里德伯常量,R∞=1.10×107m-1,n取整数。3.巴耳末公式的意义:以简洁的形式反映了氢原子的线状光谱的特征。(三)经典理论的困难1.核式结构模型的成就:正确地指出了原子核的存在,很好地解释了α粒子散射实验。2.经典理论的困难:经典物理学既无法解释原子的稳定性,又无法解释原子光谱的分立线状谱。(四)玻尔原子理论的基本假设1.轨道量子化(1)原子中的电子在库仑引力的作用下,绕原子核做圆周运动;(2)电子运行轨道的半径不是任意的,也就是说电子的轨道是量子化的(填“连续变化”或“量子化”);(3)电子在这些轨道上绕核的运动是稳定的,不产生电磁辐射;2.定态(1)当电子在不同的轨道上运动时,原子处于不同的状态,具有不同的能量.电子只能在特定轨道上运动,原子的能量只能取一系列特定的值.这些量子化的能量值叫作能级;(2)原子中这些具有确定能量的稳定状态,称为定态.能量最低的状态称为基态,其他的状态叫作激发态。3.频率条件当电子从能量较高的定态轨道(其能量记为En)跃迁到能量较低的定态轨道(能量记为Em,m<n)时,会放出能量为hν的光子,该光子的能量hν=En-Em,该式称为频率条件,又称辐射条件。要点二、玻尔理论对氢光谱的解释氢原子能级跃迁(一)玻尔理论对氢光谱的解释1.氢原子能级图(如图所示)2.解释巴耳末公式巴耳末公式中的正整数n和2正好代表能级跃迁之前和跃迁之后所处的定态轨道的量子数n和2。3.解释气体导电发光:通常情况下,原子处于基态,非常稳定,气体放电管中的原子受到高速运动的电子的撞击,有可能向上跃迁到激发态,处于激发态的原子是不稳定的,会自发地向能量较低的能级跃迁,放出光子,最终回到基态。4.解释氢原子光谱的不连续性:原子从较高的能级向低能级跃迁时放出的光子的能量等于前后两个能级之差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线。5.解释不同原子具有不同的特征谱线:不同的原子具有不同的结构,能级各不相同,因此辐射(或吸收)的光子频率也不相同。(二)玻尔理论的局限性1.成功之处:玻尔的原子理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱的实验规律;2.局限性:保留了经典粒子的观念,仍然把电子的运动看作经典力学描述下的轨道运动;3.电子云:原子中的电子没有确定的坐标值,我们只能描述某时刻电子在某个位置出现概率的多少,把电子这种概率分布用疏密不同的点表示时,这种图像就像云雾一样分布在原子核周围,故称电子云。要点突破突破一:氢原子光谱和玻尔的原子模型1.光谱的分类2.太阳光谱特点在连续谱的背景上出现一些不连续的暗线,是一种吸收光谱产生原因阳光中含有各种颜色的光,但当阳光透过太阳的高层大气射向地球时,太阳高层大气中含有的元素会吸收它自己特征谱线的光,然后再向四面八方发射出去,到达地球的这些谱线看起来就暗了,这就形成了明亮背景下的暗线3.光谱分析(1)优点:灵敏度高,分析物质的最低量达10-13kg;(2)应用:a.发现新元素;b.鉴别物体的物质成分;(3)用于光谱分析的光谱:线状光谱和吸收光谱。4.氢原子光谱的特点:在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性。5.巴耳末公式(1)巴耳末对氢原子光谱的谱线进行研究得到公式:eq\f(1,λ)=R∞(eq\f(1,22)-eq\f(1,n2))(n=3,4,5,…),该公式称为巴耳末公式.式中R叫作里德伯常量,实验值为R∞=1.10×107m-1。(2)公式中只能取n≥3的整数,不能连续取值,波长是分立的值。突破二:玻尔理论对氢光谱的解释氢原子能级跃迁(一)自发跃迁与受激跃迁的比较1.自发跃迁:①由高能级到低能级,由远轨道到近轨道.②释放能量,放出光子(发光):hν=E初-E末.③大量处于激发态为n能级的原子可能的光谱线条数:eq\f(nn-1,2).2.受激跃迁:①由低能级到高能级,由近轨道到远轨道;②吸收能量eq\b\lc\{\rc\(\a\vs4\al\co1(a.光照射,b.实物粒子碰撞))(二)使原子能级跃迁的两种粒子——光子与实物粒子1.原子若是吸收光子的能量而被激发,则光子的能量必须等于两能级的能量差,否则不被吸收,不存在激发到n能级时能量有余,而激发到n+1能级时能量不足,则可激发到n能级的问题.2.原子还可吸收外来实物粒子(例如,自由电子)的能量而被激发,由于实物粒子的动能可部分地被原子吸收,所以只要入射粒子的能量大于或等于两能级的差值,就可使原子发生能级跃迁.(三)一个氢原子跃迁和一群氢原子跃迁的区别1.一个氢原子跃迁的情况分析①确定氢原子所处的能级,画出能级图。②根据跃迁原理,画出氢原子向低能级跃迁的可能情况示意图。2.一群氢原子跃迁问题的计算①确定氢原子所处激发态的能级,画出跃迁示意图;②运用归纳法,根据数学公式N=Ceq\o\al(2,n)=eq\f(nn-1,2)确定跃迁时辐射出几种不同频率的光子;③根据跃迁能量公式hν=Em-En(m>n)分别计算出各种光子的频率。典例精析题型一:氢原子光谱和玻尔的原子模型例一.下列说法错误的是()A.到达地球表面处的太阳光的光谱是吸收光谱B.一个电子和一个质子具有同样的动量时,它们的德布罗意波波长也相同C.根据海森伯的不确定性关系可知,不可能同时准确地测定微观粒子的位置和动量D.光的双缝干涉现象中,可以用光程差与波长的关系确定屏上某点是亮纹还是暗纹,所以光波不是概率波【答案】D【分析】A.到达地面的太阳光谱是吸收光谱,故A正确,不符合题意;B.由,可知动量相同的电子和质子的德布罗意波长相等,故B正确,不符合题意;C.由不确定性关系可知,微观粒子没有准确的位置和动量,故C正确,不符合题意;D.光波是概率波,故D错误,符合题意。故选D。变式迁移1:如图所示为氢原子的能级图,巴耳末系是吸收光子能量的原子进入激发态()后返回的量子状态时释放出的谱线,下列说法正确的是()A.巴耳末系中的最小频率与最大频率之比B.处于能级的氢原子可以吸收能量为的光子C.一个氢原子从能级向基态跃迁时,可发出6种不同频率的光子D.氢原子由能级跃迁到能级时,原子的电势能增加,产生的电磁波的波长最长【答案】B【分析】A.由巴耳末公式当时,有最小波长λ1当n=3时,有最长波长λ2则根据则巴耳末系中的最小频率与最大频率之比,A错误;B.氢原子的能级中能量值最小为-13.6eV,处于n=1能级的氢原子可以吸收能量为的电子的能量,从而发生电离现象,B正确;C.一个处于n=4能级的氢原子向低能级跃迁时,最多能发出3种不同频率的光,即为n=4→n=3,n=3→n=2,n=2→n=1,C错误;D.氢原子由n=2能级跃迁到n=1能级后,其轨道半径减小,电势能减小,能级差最小,放出光子的能量最小,根据产生的电磁波的波长最长,D错误。故选B。题型二:玻尔理论对氢光谱的解释氢原子能级跃迁例二.如图所示是氢原子的能级图,大量处于n=4激发态的氢原子向低能级跃迁时,可以辐射出多种不同频率的光子,其中巴耳末系是指氢原子由高能级向n=2能级跃迁时释放的光子。下列说法正确的是()A.最多可放出6种频率不同的光子,全部属于巴耳末系B.放出的光子中波长最长的是n=4激发态跃迁到n=3激发态时产生的C.放出的光子可能使逸出功为13eV的金属发生光电效应D.用能量为2.56eV的光子照射处于n=2能级的氢原子,可以使它跃迁到n=4能级【答案】B【分析】A.最多可放出6种频率不同的光子,属于巴尔末系的只有两种。A错误;B.光子波长最长时,其频率最小,即光子能量最小,所以放出的光子中波长最长的是n=4激发态跃迁到n=3激发态时产生的。B正确;C.放出的光子能量最大的是12.75eV,故不能使逸出功为13eV的金属发生光电效应。C错误;D.处于n=2能级的氢原子,跃迁到n=4能级需要吸收2.55eV能量的光子,D错误。故选B。变式迁移2:如图所示,为氢原子的能级示意图:a表示从能级跃迁到时辐射的光子;b表示从能级跃迁到时辐射的光子;c表示从能级跃迁到时辐射的光子。则以下说法正确的是()A.玻尔的原子能级模型可以解释所有原子辐射光子的规律B.若b光可使某金属发生光电效应,则a光也一定可以C.若有一个处于能级的氢原子向低能级跃迁,则该氢原子只能发出a、b、c三种光子的其中一种D.若有一群处于能级的氢原子向低能级跃迁,则这些氢原子最多可辐射出10种不同频率的光子【答案】D【分析】A.玻尔的原子能级模型只能解释氢原子的光谱规律,选项A错误;B.a光的能量比b光的能量小,不一定能使该金属发生光电效应,选项B错误;C.一个能级的氢原子向低能级跃迁,最多能辐射出4种光子,选项C错误;D.从跃迁到,最多可辐射出10种不同频率的光子,选项D正确。故选D。强化训练选择题1.目前世界上最准确的计时工具就是原子钟,它是20世纪50年代出现的,原子钟是利用原子释放能量时发出的电磁波来计时的。现在用在原子钟里的元素有氢、绝、铷等,其中氢原子的能级图如图所示,现有大量的氢原子处于的激发态,向低能级跃迁时辐射出若干种不同频率的光,下列说法正确的是()A.由能级跃迁到能级产生的光频率最小B.由能级跃迁到能级产生的光能使某金属电离说明光是粒子C.由能级跃迁到能级产生的光最容易发生衍射现象D.最多可以辐射出6种不同频率的光【答案】D【解析】A.由能级跃迁到能级差最大,产生的光子能量最高,根据可得频率最大,故A错误;B.光使金属电离的现象说明光具有能量,具有粒子性,但并不能说明光是粒子,故B错误;C.波长越长越容易发生衍射现象,根据A项可知由能级跃迁到能级产生的光频率最大,则波长最小,最不容易发生衍射现象,故C错误;D.由可知,大量处于能级的氢原子最多可以辐射出6种不同频率的光,故D正确。故选D。2.下列说法正确的是()A.动能相同的质子和电子,它们的德布罗意波的波长相同B.一个氢原子处在n=4的能级,当它跃迁到较低能级时,最多能辐射出3种频率的光子C.用相同频率的光在相同的条件下先后照射锌板和银板时均有光电子逸出,逸出的光电子动能一定相同D.玻尔将量子观念引入原子领域,成功地解释了氢原子和其他原子光谱的实验规律【答案】B【解析】A.根据公式,动能相同时,因为质子与电子质量不同,所以波长也不同,A错误;B.单个氢原子在能级时,最多可以从到,再到,,辐射3种频率的光子,B正确;C.相同频率的光照射,因为两种材质的逸出功并不相同,所以逸出的光电子动能并不一定相同,C错误;D.波尔原子理论只是解释了氢原子光谱,D错误。故选B。3、氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中()A.原子要吸收光子,电子的动能增大,原子的电势能增大B.原子要放出光子,电子的动能减小,原子的电势能减小C.原子要吸收光子,电子的动能增大,原子的电势能减小D.原子要吸收光子,电子的动能减小,原子的电势能增大答案:D解析:电子从距核较近的轨道跃迁到距核较远的轨道过程中,原子要吸收光子,能级增大,总能量增大,根据ke4、如图所示为氢原子的能级示意图,一群氢原子处于的激发态,在自发跃迁中放出一些光子,用这些光子照射逸出功为的钾,下列说法正确的是()A.这些氢原子最多可能发出4种不同频率的光B.这些氢原子发出的所有光子均能使金属钾发生光电效应C.用这些氢原子跃迁放出的光照射金属钾,逸出的光电子最大初动能一定不大于D.氢原子在由高能级向低能级跃迁过程中,核外电子的动能也随之减小【答案】C【分析】A.一群处在能级的氢原子,自发向低能级跃迁,放出光子的种类为种﹐A错误;B.由于钾金属的逸出功为,故并不是这6种颜色的光照射钾都会发生光电效应,例如从4能级向3能级跃迁释放的光子能量为B错误;C.这6种颜色的光中,能量最高的光是由4能级向1能级跃迁时产生的,能量为用这种颜色的光照射在金属钾上,由爱因斯坦光电效应方程可知,最大初动能为,C正确;D.氢原子在由高能级向低能级跃迁过程中,核外电子的动能可以类比天体运动中环绕天体的高度降低,线速度变大,动能变大进行判断,D错误。故选C。5、关于近代物理学史,下列说法正确的是()A.卢瑟福的α粒子散射实验,使人们认识到原子是可以分割的,是由更小的微粒组成的B.光电效应和康普顿效应深入地揭示了光的粒子性的一面C.爱因斯坦最先将能量子概念引入物理学,使得光电效应的理论与实验的矛盾迎刃而解D.玻尔最先将能量子概念引入物理学,提出了定态和跃迁的概念,成功地解释了氢原子光谱的实验规律【答案】B【分析】A.卢瑟福通过α粒子散射实验提出了原子的核式结构模型,汤姆孙通过研究阴极射线发现了电子,使人们认识到原子是可以分割的,是由更小的微粒组成的,故A错误;B.光电效应和康普顿效应深入地揭示了光的粒子性的一面,前者表明光子具有能量,后者表明光子除了具有能量之外还具有动量,故B正确;CD.普朗克最先将能量子概念引入物理学;爱因斯坦将光子概念引入物理学,使得光电效应的理论与实验的矛盾迎刃而解;玻尔建立了量子化轨道的原子模型,提出了定态和跃迁的概念,成功地解释了氢原子光谱的实验规律,故CD错误。故选B。6、在原子结构的研究方面,科学家前赴后继、不断完善,以下说法错误的是()A.汤姆孙通过对阴极射线的研究发现了电子,使人们认识到原子本身是有结构的B.卢瑟福通过对α粒子散射实验现象的分析提出了原子的核式结构模型,完全否定了汤姆孙的“枣糕模型”C.玻尔把微观世界中物理量取分立值的观念应用到原子系统,提出了自己的原子结构假说,完全否定了核式结构模型D.玻尔的原子理论只成功解释了氢原子光谱的实验规律,这说明了玻尔模型也是有局限性的【答案】C【分析】A.汤姆孙通过对阴极射线的研究发现了电子,使人们认识到原子本身是有结构的,故A正确;B.卢瑟福通过对α粒子散射实验现象的分析提出了原子的核式结构模型,完全否定了汤姆孙的“枣糕模型”,故B正确;C.玻尔在原子核式结构模型的基础上把微观世界中物理量取分立值的观念应用到原子系统中,提出了自己的原子结构假说。故C错误;D.玻尔的原子理论只成功解释了氢原子光谱的实验规律,无法解释更复杂的原子光谱,这说明了玻尔模型也是有局限性的。故D正确。故选C。7、以下物理量中,谁属于“量子化”?()A.温度计测量的温度 B.天平测量的质量C.人所感受到的时间 D.油滴所带电荷量【答案】D【分析】所谓量子化就是指数据是分立的不连续的,即一份一份的,故选D。8、如图所示的α粒子散射实验中,少数α粒子发生大角度偏转的原因是()A.α粒子与原子中的电子发生碰撞B.正电荷在原子中均匀分布C.原子中带正电的部分和绝大部分质量集中在一个很小的核上D.原子只能处于一系列不连续的能量状态中【答案】C【分析】A.α粒子与原子中的电子发生碰撞,不会发生大角度偏转,因为电子的质量电荷量太小,所以A错误;BC.少数α粒子发生大角度偏转,大多数没有发生偏转说明了原子的内部是很空阔的,原子中带正电的部分和绝大部分质量集中在一个很小的核上,所以C正确;B错误;D.原子的光谱线现象说明了原子只能处于一系列不连续的能量状态中,在散射中体现不出来,所以D错误;故选C。9、用a、b两种可见光照射同一光电效应装置,测得的光电流和电压的关系图像如图甲所示,图乙为氢原子的能级图。已知可见光的光子能量在到之间,下列说法正确的是()A.a光的波长比b光的小B.单色光a的光子动量比单色光b的光子动量大C.用大量的光子去照射基态的氢原子可以得到两种可见光D.若a光是氢原子从能级跃迁到能级时发出的光,则b光是氢原子从能级跃迁到能级时发出的光【答案】C【解析】A.根据可知,频率越大的截止电压越大,所以a光的频率比b光的小,根据可知,频率越大时波长越小,所以a光的波长比b光的大,A错误;B.根据可知,单色光a的光子动量比单色光b的光子动量小,B错误;C.用大量的光子去照射基态的氢原子,则有可知n=4,即可以跃迁到第四个能级,所以能得到两种可见光,即跃迁到,跃迁到,C正确;D.根据因为a光的频率比b光的小,则a光是从跃迁到能级时发出的光,则b光不可能是从跃迁到能级时发出的光,D错误。故选C。10、(多选)某原子在下列各能级间跃迁:(1)从到;(2)从到;(3)从到。在跃迁过程中辐射出三种颜色光分别为、、,下列说法正确的是()A.通过同一双缝装置产生干涉,干涉条纹最密集,最稀疏B.、、三种颜色的复色光以某一角度从玻璃向空气中入射,在界面处没有光线透射出去,则减小入射角后先透射出去C.如果光能让某种金属恰好发生光电效应,则、光也可以D.三种光在真空中传播的速度相同【答案】BCD【解析】A.由图可以看出、、三者的频率高低由知双缝干涉条纹间距正比于光的波长,所以双缝干涉条纹最密集,最稀疏,A错误;B.由折射率与光的频率的关系可知,频率越高,介质对其折射率就越大,所以有光从光密介质到光疏介质的临界角公式为所以临界角b的最大,先透射出去,B正确;C.的频率为极限频率,由知、的频率都超过金属的极限频率,所以都可以发生光电效应,故C正确;D.所有频率的光在真空中光速都为c,故D正确。故选BCD。11、(多选)根据玻尔理论,下列说法正确的是()A.各种原子吸收光谱中的每一条暗线都跟这种原子的发射光谱中的一条亮线相对应B.电子沿某一轨道绕核运动,若其圆周运动的频率是ν,则其发出光子的频率也是νC.若氢原子处于量子数为m(m>1)的定态,则氢原子是稳定的,不辐射光子D.在巴耳末线系中,波长最长的谱线是从量子数n=3的能级跃迁到n=2的能级时发出的【答案】AD【解析】A.根据光谱分析可知,各种原子吸收光谱中的每一条暗线都跟这种原子的发射光谱中的一条亮线相对应,故A正确;B.当电子沿某一轨道绕核运动时,并不向外辐射能量,其状态是稳定的,故B错误;C.若氢原子处于量子数为m(m>1)的定态,是不稳定的,会发生跃迁向外辐射光子,故C错误;D.根据巴耳末公式则当波长最长时,则从量子数n=3的能级跃迁到n=2的能级时辐射的光子波长最长,故D正确。故选AD。4.5粒子的波动性和量子力学的建立基础导学要点一、粒子的波动性与物质波的实验验证(一)粒子的波动性1.德布罗意波:每一个运动的粒子都与一个对应的波相联系,这种与实物粒子相联系的波称为德布罗意波,也叫物质波。2.粒子的能量ε和动量p跟它所对应的波的频率ν和波长λ之间的关系:ν=eq\f(ε,h),λ=eq\f(h,p)。(二)物质波的实验验证1.实验探究思路:干涉、衍射是波特有的现象,如果实物粒子具有波动性,则在一定条件下,也应该发生干涉或衍射现象。2.实验验证:1927年戴维孙和汤姆孙分别用单晶和多晶晶体做了电子束衍射的实验,得到了电子的衍射图样,证实了电子的波动性。3.说明:除了电子以外,人们陆续证实了中子、质子以及原子、分子的波动性,对于这些粒子,德布罗意给出的ν=eq\f(ε,h)和λ=eq\f(h,p)关系同样正确。4.电子、质子、原子等粒子和光一样,也具有波粒二象性。要点二、量子力学的建立与应用(一)量子力学的建立(二)量子力学的应用借助量子力学,人们深入认识了微观(填“宏观”或“微观”)世界的组成、结构和属性。1.推动了核物理和粒子物理的发展.人们认识了原子、原子核、基本粒子等各个微观(填“宏观”或“微观”)层次的物质结构,又促进了天文学和宇宙学的研究。2.推动了原子、分子物理和光学的发展人们认识了原子的结构,以及原子、分子和电磁场相互作用的方式,发展了各式各样的对原子和电磁场进行精确操控和测量的技术。3.推动了固体物理的发展:人们了解了固体中电子运行的规律,并弄清了为什么固体有导体、绝缘体和半导体之分。要点突破突破一:粒子的波动性与物质波的实验验证1.对光的本性认识史人类对光的认识经历了漫长的历程,从牛顿的光的微粒说到托马斯·杨和菲涅耳的波动说,从麦克斯韦的光的电磁说到爱因斯坦的光子说。直到20世纪初,对于光的本性的认识才提升到一个更高层次,即光具有波粒二象性。对于光的本性认识史,列表如下:学说名称微粒说波动说电磁说光子说波粒二象性内容要点光是一群弹性粒子光是一种机械波光是一种电磁波光是由一份一份光子组成的光是具有电磁本性的物质,既有波动性又有粒子性理论领域宏观世界宏观世界微观世界微观世界微观世界2.对光的波粒二象性的理解项目实验基础表现说明光的波动性干涉和衍射(1)光子在空间各点出现的可能性大小可用波动规律来描述(2)足够能量的光在传播时,表现出波的性质(1)光的波动性是光子本身的一种属性,不是光子之间相互作用产生的(2)光的波动性不同于宏观观念的波光的粒子性光电效应、康普顿效应(1)当光同物质发生作用时,这种作用是“一份一份”进行的,表现出粒子的性质(2)少量或个别光子容易显示出光的粒子性(1)粒子的含义是“不连续”“一份一份”的(2)光子不同于宏观观念的粒子[特别提醒]大量光子表现出波动性,个别光子表现出粒子性,光具有波粒二象性。典例精析题型一:粒子的波动性与物质波的实验验证例一.从光的波粒二象性出发,下列说法正确的是()A.光是高速运动的微观粒子,每个光子都具有波粒二象性B.光的频率越高,光子的能量越大C.在光的干涉中,暗条纹的地方是光子不会到达的地方D.在光的干涉中,光子一定到达亮条纹的地方变式迁移1:影响显微镜分辨率本领的一个因素是衍射,衍射现象越明显,分辨本领越低。使用电子束工作的电子显微镜与传统的光学显微镜相比有更高的分辨本领,它利用高压对电子束加速,最后打在感光胶片上来观察显微图像,以下说法正确的是()A.加速电压越高,电子的波长越短,衍射现象越明显B.加速电压越高,电子的波长越长,分辨本领越强C.如果加速电压相同,则用质子流工作的显微镜比用电子流工作的显微镜分辨本领弱D.如果加速电压相同,则用质子流工作的显微镜比用电子流工作的显微镜分辨本领强题型二:量子力学的建立与应用例二.太阳帆(英文名:Solarsails)是利用太阳光的光压进行宇宙航行的一种航天器。科学家设想未来的宇航事业中,可以在没有空气阻力存在的太空利用太阳帆,为星际飞船提供加速度。假设该飞船所在地,太阳光垂直射到太阳帆上,太阳光子会连续撞击太阳帆并以原速率反射。若太阳帆面积为S,每秒钟每单位面积接收到的光子数为n,光子的平均波长为。飞船总质量为m,光速为c。则下列说法中正确的是()A.每个光子被反射前后动量的变化量为B.飞船加速度的大小为C.飞船加速度的大小为D.每秒钟太阳帆接收到的光子所具有的总平均能量为变式迁移2:下列说法正确的是()A.两支相同的激光笔发射出来的光可以产生干涉现象B.光的偏振现象说明光是纵波C.卢瑟福核式结构模型可以很好的解释原子光谱是线状的D.电子显微镜分辨本领比光学显微镜分辨高主要是因为电子的物质波波长比可见光更短强化训练选择题1、用三种不同的单色光照射同一金属做光电效应实验,得到的光电流与电压的关系如图所示,则下列说法正确的是()A.单色光A和B是颜色相同、强度不同的光B.单色光A的频率大于单色光C的频率C.单色光A的遏止电压大于单色光C的遏止电压D.A光对应的光电子德布罗意波长大于C光对应的德布罗意波长2、波粒二象性是微观世界的基本特征,以下说法正确的有()A.光电效应现象揭示了光的波动性B.热中子束射到晶体上产生衍射图样说明运动的中子具有波动性C.黑体辐射的实验规律可用光的波动性解释D.动能相等的质子和电子,它们的德布罗意波长也相等3、在科学研究中,常利用热中子衍射研究晶体的结构,因为热中子的德布罗意波长与晶体中原子间距(约)相近。已知中子质量,普朗克常量,可以估算热中子动能的数量级为()A. B. C. D.4、下表是几种金属的截止频率和逸出功,用频率为的光照射这些金属,哪种金属能产生光电效应,且从该金属表面逸出的具有最大初动能的光电子对应的德布罗意波长最长()金属钨钙钠铷截止频率(×1014Hz)10.957.735.535.15逸出功(eV)4.543.202.292.13A.钨 B.钙 C.钠 D.铷5、如图为氢原子光谱在可见光区域内的四条谱线Hα、Hβ、Hγ和,都是氢原子中电子从量子数n>2的能级跃迁到n=2的能级发出的光,根据此图判定错误的是()A.Hα对应的原子前后能级之差最小B.同一介质对Hα的传播速度最大C.光子的动量最大D.用Hγ照射某一金属能发生光电效应,则用Hβ照射同一金属一定不能产生光电效应6、关于下列四幅图说法正确的是()A.玻尔原子理论的基本假设认为,电子绕核运行轨道的半径是任意的B.光电效应产生的条件为:光照强度大于临界值C.电子束通过铝箔时的衍射图样证实了运动电子具有波动性D.发现少数粒子发生了较大偏转,说明金原子质量大而且很坚硬7、.如图所示,、、、分别是不同的单色光通过相同的双缝或单缝形成的干涉或衍射图样,分析各图样的特点,可以得出的正确结论是()A.、是光的衍射图样,、d是光的干涉图样B.形成图样光的光子能量比形成图样光的光子能量小C.形成图样光的光子动量比形成图样光的光子动量大D.形成图样的光在同一种玻璃介质中传播的速度比形成图样的光大8、下列关于光的本性说法正确的是()A.在其他条件相同时,光的频率越高,衍射现象越明显B.频率越低的光粒子性越明显C.大量光子往往表现波动性,少量光子往往表现粒子性D.若让光子一个一个地通过狭缝,它们将严格按照相同的轨道做极有规律的匀速直线运动9、波粒二象性是微观世界的基本特征,以下说法正确的是()A.粒子的动量越小,其波动性越易观察B.速率相同的质子和电子,质子的德布罗意波长比电子长C.康普顿效应进一步证实了光的波动说的正确性D.电子的衍射现象可以证明光具有粒子性10、.Li(锂核)是不稳定的,一个静止的Li分裂时的核反应方程为Li―→He+X+γ,其中X的动量大小为p1,He的动量大小为p2,γ光子与He运动方向相同,普朗克常量为h,则()A.X是中子B.X是电子C.γ光子的波长为D.γ光子的波长为11、如图所示为研究光电效应的实验装置图,若用能量为的光子照射到光电管阴极后,电流计中有电流;调节滑动变阻器触头,当电压表读数为时,电流计示数恰好为零。已知电子的质量、电荷量,普朗克常量。求:(1)该光电管阴极逸出功;(2)光电子的物质波的最小波长。12、科学家设想未来的宇航事业中利用太阳帆来加速星际飞船,设该飞船所在地每秒每单位面积接收到的光子数为n,光子平均波长为λ,太阳帆面积为S,反射率100%,设太阳光垂直射到太阳帆上,飞船总质量为m。(1)求飞船加速度的表达式(光子动量p=);(2)若太阳帆是黑色的,飞船的加速度又为多少?4.5粒子的波动性和量子力学的建立基础导学要点一、粒子的波动性与物质波的实验验证(一)粒子的波动性1.德布罗意波:每一个运动的粒子都与一个对应的波相联系,这种与实物粒子相联系的波称为德布罗意波,也叫物质波。2.粒子的能量ε和动量p跟它所对应的波的频率ν和波长λ之间的关系:ν=eq\f(ε,h),λ=eq\f(h,p)。(二)物质波的实验验证1.实验探究思路:干涉、衍射是波特有的现象,如果实物粒子具有波动性,则在一定条件下,也应该发生干涉或衍射现象。2.实验验证:1927年戴维孙和汤姆孙分别用单晶和多晶晶体做了电子束衍射的实验,得到了电子的衍射图样,证实了电子的波动性。3.说明:除了电子以外,人们陆续证实了中子、质子以及原子、分子的波动性,对于这些粒子,德布罗意给出的ν=eq\f(ε,h)和λ=eq\f(h,p)关系同样正确。4.电子、质子、原子等粒子和光一样,也具有波粒二象性。要点二、量子力学的建立与应用(一)量子力学的建立(二)量子力学的应用借助量子力学,人们深入认识了微观(填“宏观”或“微观”)世界的组成、结构和属性。1.推动了核物理和粒子物理的发展.人们认识了原子、原子核、基本粒子等各个微观(填“宏观”或“微观”)层次的物质结构,又促进了天文学和宇宙学的研究。2.推动了原子、分子物理和光学的发展人们认识了原子的结构,以及原子、分子和电磁场相互作用的方式,发展了各式各样的对原子和电磁场进行精确操控和测量的技术。3.推动了固体物理的发展:人们了解了固体中电子运行的规律,并弄清了为什么固体有导体、绝缘体和半导体之分。要点突破突破一:粒子的波动性与物质波的实验验证1.对光的本性认识史人类对光的认识经历了漫长的历程,从牛顿的光的微粒说到托马斯·杨和菲涅耳的波动说,从麦克斯韦的光的电磁说到爱因斯坦的光子说。直到20世纪初,对于光的本性的认识才提升到一个更高层次,即光具有波粒二象性。对于光的本性认识史,列表如下:学说名称微粒说波动说电磁说光子说波粒二象性内容要点光是一群弹性粒子光是一种机械波光是一种电磁波光是由一份一份光子组成的光是具有电磁本性的物质,既有波动性又有粒子性理论领域宏观世界宏观世界微观世界微观世界微观世界2.对光的波粒二象性的理解项目实验基础表现说明光的波动性干涉和衍射(1)光子在空间各点出现的可能性大小可用波动规律来描述(2)足够能量的光在传播时,表现出波的性质(1)光的波动性是光子本身的一种属性,不是光子之间相互作用产生的(2)光的波动性不同于宏观观念的波光的粒子性光电效应、康普顿效应(1)当光同物质发生作用时,这种作用是“一份一份”进行的,表现出粒子的性质(2)少量或个别光子容易显示出光的粒子性(1)粒子的含义是“不连续”“一份一份”的(2)光子不同于宏观观念的粒子[特别提醒]大量光子表现出波动性,个别光子表现出粒子性,光具有波粒二象性。典例精析题型一:粒子的波动性与物质波的实验验证例一.从光的波粒二象性出发,下列说法正确的是()A.光是高速运动的微观粒子,每个光子都具有波粒二象性B.光的频率越高,光子的能量越大C.在光的干涉中,暗条纹的地方是光子不会到达的地方D.在光的干涉中,光子一定到达亮条纹的地方【答案】B【分析】A.光是高速运动的微观粒子,光的波动性是对大量光子集体行为的一种描述,所以不能说每个光子都具有波粒二象性,故A错误;B.光的频率越高,光子的能量越大,故B正确;CD.在光的干涉中,亮条纹是光子出现概率高的位置,暗条纹是光子出现概率低的位置,光子并不是一定到达亮条纹的地方,也并不一定就不出现在暗条纹的地方,故CD错误。故选B。变式迁移1:影响显微镜分辨率本领的一个因素是衍射,衍射现象越明显,分辨本领越低。使用电子束工作的电子显微镜与传统的光学显微镜相比有更高的分辨本领,它利用高压对电子束加速,最后打在感光胶片上来观察显微图像,以下说法正确的是()A.加速电压越高,电子的波长越短,衍射现象越明显B.加速电压越高,电子的波长越长,分辨本领越强C.如果加速电压相同,则用质子流工作的显微镜比用电子流工作的显微镜分辨本领弱D.如果加速电压相同,则用质子流工作的显微镜比用电子流工作的显微镜分辨本领强【答案】D【分析】AB.光的波长越大,则波动性越强,越容易发生明显衍射;根据知加速电压越大,电子束的速度越大,电子的波长越小,越不容易发生明显的衍射,显微镜的分辨本领越强,AB错误;CD.根据得由于质子和电子的电荷量的绝对值相等,而质子的质量远大于电子的质量,故经相同电压加速后的质子动量更大,波长更小,更不容易发生明显的衍射,显微镜的分辨本领更强,C错误D正确。故选D。题型二:量子力学的建立与应用例二.太阳帆(英文名:Solarsails)是利用太阳光的光压进行宇宙航行的一种航天器。科学家设想未来的宇航事业中,可以在没有空气阻力存在的太空利用太阳帆,为星际飞船提供加速度。假设该飞船所在地,太阳光垂直射到太阳帆上,太阳光子会连续撞击太阳帆并以原速率反射。若太阳帆面积为S,每秒钟每单位面积接收到的光子数为n,光子的平均波长为。飞船总质量为m,光速为c。则下列说法中正确的是()A.每个光子被反射前后动量的变化量为B.飞船加速度的大小为C.飞船加速度的大小为D.每秒钟太阳帆接收到的光子所具有的总平均能量为【答案】B【分析】A.每个光子被反射前后动量的变化量为选项A错误;BC.对飞船由动量定理解得飞船加速度的大小为选项B正确,C错误;D.每秒钟太阳帆接收到的光子所具有的总平均能量为选项D错误。故选B。变式迁移2:下列说法正确的是()A.两支相同的激光笔发射出来的光可以产生干涉现象B.光的偏振现象说明光是纵波C.卢瑟福核式结构模型可以很好的解释原子光谱是线状的D.电子显微镜分辨本领比光学显微镜分辨高主要是因为电子的物质波波长比可见光更短【答案】D【分析】A.两支相同的激光笔发射出来的光频率也不可能相同,不一定产生干涉现象,选项A错误;B.光的偏振现象说明光是横波,选项B错误;C.卢瑟福核式结构模型不能解释原子光谱是线状的,选项C错误;D.电子显微镜分辨率比光学显微镜更高,是因为它利用了电子物质波的波长比可见光短,因此不容易发生明显衍射。故D正确。故选D。强化训练选择题1、用三种不同的单色光照射同一金属做光电效应实验,得到的光电流与电压的关系如图所示,则下列说法正确的是()A.单色光A和B是颜色相同、强度不同的光B.单色光A的频率大于单色光C的频率C.单色光A的遏止电压大于单色光C的遏止电压D.A光对应的光电子德布罗意波长大于C光对应的德布罗意波长【答案】A【解析】A.由图可知,单色光A和单色光B的遏止电压相同,因此它们是同一种色光,而饱和电流不同,可知这两束光的强度不同,A正确;BC.根据同种金属,逸出功W相同,单色光A的遏止电压小于于单色光C的遏止电压,遏止电压越大,入射光的频率越高,因此单色光A的频率小于单色光C的频率,BC错误;D.A光对应的光电子的最大初动能小于C光对应光电子的最大初动能,但C光对应的光电子中,大量光子不一定具有最大初动能,也可能有些光电子动能小于A光对应的光电子的动能,也就是可能出现A光对应的光电子的动量大于C光对应光电子的动量,根据德布罗意波长A光对应的光电子德布罗意波长可能小于C光对应的德布罗意波长,D错误。故选A。2、波粒二象性是微观世界的基本特征,以下说法正确的有()A.光电效应现象揭示了光的波动性B.热中子束射到晶体上产生衍射图样说明运动的中子具有波动性C.黑体辐射的实验规律可用光的波动性解释D.动能相等的质子和电子,它们的德布罗意波长也相等【答案】B【解析】A.光电效应无法用波动性解释,爱因斯坦引入了光量子,成功解释了光电效应,因此光电效应现象揭示了光的粒子性,故A错误;B.衍射和干涉是波特有的现象,热中子束射到晶体上产生衍射图样说明中子具有波动性,故B正确;C.黑体辐射的实验规律无法用光的波动性解释为了解释黑体辐射规律,普朗克建立了量子理论成功解释了黑体辐射的实验规律,故C错误;D.根据因为质子质量大于电子质量,质子动量大于电子的动量,由知质子的德布罗意波长比电子的小。故D错误。故选B。3、在科学研究中,常利用热中子衍射研究晶体的结构,因为热中子的德布罗意波长与晶体中原子间距(约)相近。已知中子质量,普朗克常量,可以估算热中子动能的数量级为()A. B. C. D.【答案】C【解析】根据德布罗意波理论,中子动量为中子动能为联立代入数据可估算出中子动能的数量级为或,故C正确,ABD错误。故选C。4、下表是几种金属的截止频率和逸出功,用频率为的光照射这些金属,哪种金属能产生光电效应,且从该金属表面逸出的具有最大初动能的光电子对应的德布罗意波长最长()金属钨钙钠铷截止频率(×1014Hz)10.957.735.535.15逸出功(eV)4.543.202.292.13A.钨 B.钙 C.钠 D.铷【答案】B【解析】由题意知,仅有钙、钠和铷三种金属能发生光电效应,根据以及德布罗意波公式根据动量和动能的关系联立可得钙代入数据从钙金属表面逸出的具有最大初动能的光电子对应的德布罗意波长最长,故B正确,ACD错误。故选B。5、如图为氢原子光谱在可见光区域内的四条谱线Hα、Hβ、Hγ和,都是氢原子中电子从量子数n>2的能级跃迁到n=2的能级发出的光,根据此图判定错误的是()A.Hα对应的原子前后能级之差最小B.同一介质对Hα的传播速度最大C.光子的动量最大D.用Hγ照射某一金属能发

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论