版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《概率论与数理统计》电子教案第一章随机事件与概率《概率论与数理统计教程》教案第一章随机事件与概率教材:《概率论与数理统计教程》总安排学时:90本章学时:14第一讲:随机事件及其运算教学内容:引言、概率论的基本概念、事件之间的关系及运算、事件之间的运算规律。教学目的:(1)了解概率论这门学科的研究对象,主要任务和应用领域;(2)深刻理解随机试验、基本事件、样本空间、随机事件的概念;掌握一个随机试验的样本空间、基本事件和有关事件的表示方法。(3)深刻理解事件的包含关系、和事件、积事件、互斥事件、互逆事件和差事件的意义;掌握事件之间的各种运算,熟练掌握用已知事件的运算表示随机事件;(4)掌握事件之间的运算规律,理解对偶律的意义。教学的过程和要求:(1)概率论的研究对象及主要任务(10分钟)举例说明概率论的研究对象和任务,与高等数学和其它数学学科的不同之处,简单介绍概率论发展的历史和应用;(i)概率论的研究对象:确定性现象或必然现象:在相同的条件下,每次观察(试验)得到的结果是完全相同的现象。例:向空中抛掷一物体,此物体上升到一定高度后必然下落;例:在一个标准大气压下把水加热到100℃必然会沸腾等现象。随机现象或偶然现象:在相同的条件下,每次观察(试验)可能出现不同结果的现象。例:在相同的条件下抛一枚均匀的硬币,其结果可能是正面(分值面)向上,也可能是反面向上,重复投掷,每次的结果在出现之前都不能确定;例:从同一生产线上生产的灯泡的寿命等现象。(ii)概率论的研究任务:概率论与数理统计就是研究和揭示随机现象的统计规律性的一门数学学科。(iii)概率论发展的历史:概率论起源于赌博问题。大约在17世纪中叶,法国数学家帕斯卡(B?Pascal)、费马(fermat)及荷兰数学家惠更斯(C?Hugeness)用排列组合的方法,研究了赌博中一些较复杂的问题。随着18、19世纪科学的迅速发展,起源于赌博的概率论逐渐被应用于生物、物理等研究领域,同时也推动了概率理论研究的发展.概率论作为一门数学分支日趋完善,形成了严格的数学体系。(iv)概率论发展的应用:概率论的理论和方法应用十分广泛,几乎遍及所有的科学领域以及工、农业生产和国民经济各部门.如应用概率统计方法可以进行气象预报,水文预报和市场预测、股市分析等;在工业中,可用概率统计方法进行产品寿命估计和可靠性分析等。(2)随机事件与样本空间;(25分钟)(重点)重点讲清随机试验的目的、随机试验要求具备的条件、概率论中随机试验可以是主动做试验,也可能是被动观察某一随机现象;讲清楚随机试验的基本事件、样本空间的定义,对于每个概念要举例说明,可用书中例1、例2、例3、例4或其它,例子中应该包括有限的、无限可数,连续的等类型。应该使学生了解样本空间可以是有限的也可以是无限的,可以是离散的也可以是连续的。随机事件的概念,基本事件与一般随机事件关系、区别,在上述例子中继续给出事件的例子。着重说明事件发生和不发生的含义,引进必然事件和不可能事件的意义。(i)随机试验的目的:要研究随机现象的规律需要进行大量的观察和试验。(ii)随机试验要求具备的条件:试验可以在相同的条件下重复进行;试验所有可能的结果是明确知道的,并且不止一个;每次试验必然出现这些可能结果中的一个,但试验前不能预知出现哪一个结果;这样的试验称为随机试验,简称试验,用字母E表示.例:掷一枚均匀硬币观察正面和反面出现的情况;例:某日电话总机所接到的呼叫次数;例:在一批灯泡中任意抽取一个,测试其寿命等等都是随机试验。(iii)基本概念:基本事件(样本点):每一个可能的基本结果(不可分解)称为E的基本事件,通常用ω表示.基本事件空间(样本空间):E的所有基本事件组成的集合称为E的基本事件空间,常用}{ω=Ω表示。例1(1)抛一枚均匀的硬币,其可能出现的结果只有两种:正面、反面.若令1ω=正面,2ω=反面,则21,ωω为该随机试验的两个基本事件,{}21ωω,=Ω为样本空间.(2)投掷一颗骰子,观察出现的点数.其可能出现的点数为:1、2、3、4、5、6,若令iω=i,i=1,2,3,4,5,6,则iω为随机试验的基本事件,样本空间21,{ωω=Ω}654321{},,,,6543,,,,,=ωωωω.(3)观察单位时间内到达某公交车站候车的人数,令iω=单位时间内有i人到达车站候车,Λ,,,210=i,则基本事件为iω,样本空间},2,1,0{},,,{210ΛΛ==Ωωωω.(4)从一批灯泡中任取一只,以小时为单位,测试这只灯泡的寿命,令t表示灯泡的寿命,则大于等于零的任意一个实数都是该试验的一个样本点,{}0≥=Ωtt.随机事件:在随机试验中可能发生、也可能不发生的事情称为随机事件,通常用大写字母CBA、、等表示.例:投掷一颗骰子出现的点数为偶数可以用事件A表示,A={出现的点数为偶数}={2,4,6},而B={出现的点数大于4}={5,6}、C={出现的点数为2}等等都是随机试验的事件.事件发生:若一次试验结果出现了事件A中的样本点,即当试验结果为1ω且A∈1ω时,则称事件A发生,否则称A不发生.必然事件:称Ω为必然事件.不可能事件:不包含任何基本事件的事件称为不可能事件,记作φ.(3)事件之间的运算关系;(30分钟)重点对于每一种关系应该举例、画维恩图说明其含义,积事件和和事件要着重说明并推广到多个事件,说明对立事件与互斥事件的相同点与不同点及其应用,差事件的意义及几种表示方法及运算关系;事件之间的运算关系:1)事件的包含关系:设在同一个试验E中有两个事件A与B,若A发生必然导致B发生(即A中任意一个基本事件都在B中),则称事件B包含事件A,记作AB?(或BA?).例:如投掷一颗骰子的试验,A={出现4点},B={出现偶数点},则A发生必导致B发生,故BA?。2)事件相等:若BA?且AB?,则称事件BA=.例:如掷骰子试验中,记A={掷出3点或6点},B={掷出3的倍数点},这两个事件所包含样本点相同,因而BA=。3)和事件:称事件A和B至少有一个发生所构成的事件为A与B的和事件,记作BAY.例:如掷一颗骰子观察所得的点数,设A={1,3,5},B={1,2,3},则BAY={1,2,3,5}。例2:测试灯泡寿命的试验中,令{}1000≤=ttB(寿命不超过1000小时),{}500≤=ttA(寿命不超过500小时),则{}1000≤==ttBBAY(寿命不超过1000小时)。4)积事件:称事件A与B同时发生所构成的事件为A与B的积事件,记作BAI或AB.例:如在掷骰子的试验中}5,4,3{},6,4,2{==BA,则AB={4},即只有随机试验出现4点时,A与B同时发生。5)互斥事件:若事件BA、不能同时发生,即φ=AB,则称事件A与B是互斥事件或互不相容事件。例3:掷一颗骰子,令A={出现奇数点},B={出现4点},则有φ=AB,即A与B互斥,{}5431,,,=+=BABAY。6)互逆事件:若事件A与事件B在一次试验中必有且只有一个发生,则称事件A与B为互逆事件或对立事件。例4:掷一颗骰子,令C={出现偶数点},则φ=AC,且CAY{}Ω==654321,,,,,,所以AC=,即C与A是互逆事件;但由于φ=AB,而}5431{,,,=BAYΩ≠,所以BA、不是互逆事件.7)差事件:称事件A发生而B不发生所构成的事件为A与B的差事件,记作BA-.例5:掷骰子试验中,令C={2,4,6},D={1,2,3},则DCDC=-{}64,=,}31{,==-CDCD.(4)事件之间的运算规律(5分钟)事件之间的交换律、结合律、分配律只需简单说明,举例说明对偶律的意义和应用。事件之间的运算律:1)交换律:BAABABBA==,YY2)结合律:)()()(BCACABCBACBA==;)(YYYY3)分配律:))(()(CBCACABBCACCBAYYYYY==;)(4)德摩根定律(对偶律):YIIYBABABABA==,(可以推广到任意多个事件的情形)。(5)以例6和例7为主。学生练习(10分钟)例6:设CBA、、是样本空间Ω中的三个随机事件,试用CBA、、的运算表达式表示下列随机事件.(1)A与B发生但C不发生;(2)事件CBA、、中至少有一个发生;(3)事件CBA、、中至少有两个发生;(4)事件CBA、、中恰好有两个发生;(5)事件CBA、、中不多于一个事件发生.解:(1)CAB;(2)CBAYY;(3)ACBCABYY;(4)BCACBACABBCACBACAB++=YY;(5)CBACBACBACBA+++或ACBCABYY。练习(10分钟)。第二讲:概率的定义和性质教学内容:概率的古典定义、统计定义、几何定义,概率的公理化体系及概率的性质。教学目的:(1)理解概率的古典定义的条件,掌握计算的一般方法,理解古典概率具备的三条性质;(2)粗知概率的统计定义和几何定义,归纳其性质;(3)深刻理解概率的公理化定义的意义,掌握概率的性质在概率计算中的应用。教学的过程和要求:(1)举例简单说明什么是概率;(5分钟)阐述概率是随机事件发生的可能性的大小。举例说明:例:抛一枚均匀的硬币,因为已知出现正、反面的可能性相同,各为21,足球裁判就用抛硬币的方法让双方队长选择场地,以示机会均等.例:某厂研制出一种新药,要考虑新药在未来市场的占有率将是多少.市场占有率高,就应多生产,获取更多利润;市场占有率低,就不能多生产,否则会造成产品积压.上述问题中的机会、市场占有率以及彩票的中奖率、产品的次品率,射击的命中率等都是用来度量随机事件发生的可能性大小的.都可以用0到1之间的一个数值(也称为比率)来作为随机事件A发生的可能性大小的度量,即事件A发生的概率,记作)(Ap.把随机事件出现的可能性大小的度量值称为该随机事件的概率.(2)概率的古典定义和计算(30分钟):由简单的例子说明古典概率应具备的条件,即有限性和等可能性,重点讲解古典概型的条件和计算,定义中强调事件和样本空间所含样本点数,而不需知道是什么样本点;讲解书中例1和例2,并通过简单的例子(如掷骰子)归纳古典概率的三个性质。(20分钟)。书中例3可不讲,补充习题(学生先做教师讲解)。(10分钟)(i)古典概率应具备的条件:试验的样本空间Ω中只含有有限多个基本事件,称为有限性;在每次试验中,每个基本事件出现的可能性相同,称为等可能性.具有这种特点的随机试验称为古典概型.(ii)概率的古典定义:定义:若随机试验为古典概型,且已知样本空间Ω中含有n个基本事件,事件A中含有k个基本事件,则事件A的概率nkAAp=Ω=基本事件总数含中所中所包含的基本事件数)(定义中强调事件和样本空间所含样本点数,而不需知道是什么样本点。(iii)古典概型的计算:利用概率的古典定义计算随机事件A的概率,首先要确定随机试验E满足古典概型的特点,然后确定样本空间Ω所包含的基本事件总数n和事件A中包含的基本事件数k.有nkAp=)(。例1:从有9件正品、3件次品的箱子中抽取两次,每次一件,按两种方式抽取(1)不放回;(2)有放回,求事件A={取得两件正品}和事件B={取得一件正品一件次品}的概率.解:(1)从12件产品中不放回抽取两件,Ω所含的基本事件数为212P,A包含的基本事件数为29P,B包含的基本事件数为1319·2PP,所以:2291112392·2)(,116111289)(212131921229=???===??==PPPBpPPAp(2)从12件产品中有放回抽取两件,Ω所含的基本事件数为212,A包含的基本事件数为29,B包含的基本事件数为9339?+?,所以:831212392)(,43129)(222=???=?????==BpAp例2:将n个球随意地放入N个箱子中)nN≥(,假设每个球都等可能地放入任意一个箱子,求下列各事件的概率:(1)指定的n个箱子各放一个球;(2)每个箱子最多放入一个球;(3)某指定的箱子里恰好放入k(nk≤)个球.解:将n个球随意地放入N个箱子中,共有nN种放法,记(1)、(2)、(3)的事件分别为CBA,,.(1)将n个球放入指定的n个箱子,每个箱子各有一球,其放法有!n种,故有nNnAp!)(=(2)每个箱子最多放入一个球,等价于先从N个箱子中任选出n个,然后每个箱子中放入一球,其放法有!nCnN种,故nnNNnCBp!)(=(3)先任取k个球(有knC种取法)放入指定的箱子中,然后将其余的kn-个球随意地放入其余1-N个箱子,共有knN--)1(种放法,故有nknknNNCCp--=)1()(.补充例题:例题:一个机构投资商考虑对5个公司中的2个公司进行一项大的投资,假设投资者不知道5个公司中的2个公司关于新产品的开发的基础不稳定。a.列出所有可能的基本事件。b.确定从3个基础更好的公司中选出2个公司的概率。c.所选公司中包含1个基础不稳定的公司的概率是多少?d.选出2个基础最不稳定公司的概率是多少?(iv)古典概率的三个性质:1)1)(0≤≤Ap;2)1)(=Ωp;3)设事件nAAA,,,Λ21两两互斥,则:+++=+++ΛΛ)()()(2121ApApAAApn)(nAp(3)简单介绍统计概率和几何概率的定义,并说明其与古典概率具有相同的性质;(10分钟)(i)统计概率的定义:定义:在一组不变的条件下,进行大量重复试验,随机事件A出现的频率nkAfn=)(稳定地在某个固定的数值p的附近摆动,我们称这个稳定值p为随机事件A的概率,记为pAp=)(.(ii)几何概率的定义:定义:设在可测区域Ω内,任一具有相同度量的子区域被取到的可能性相等,且从Ω中随机取一点属于子区域A的可能性只与A的测度成正比,而与A的形状及位置无关,则事件A={点属于A}的概率为:Ω==ΩSSApAA的测度区域的测度子区域)(统计概率和几何概率与古典概率具有相同的性质。(4)由前面概率的性质引出概率的公理化定义,说明公理化定义的伟大意义。(10分钟)(i)概率的公理化定义:定义:设随机试验E的样本空间为Ω,对于E的每一个事件A,赋予一个实数)(Ap,且)(Ap满足以下三个条件(公理):(1)非负性:对于任意Ω?A,有0)(≥Ap;(2)规范性:1)(=Ωp;(3)可列可加性:若ΛΛ,,,,nAAA21是两两互斥的事件列,有∑∞==++++121)()(iinApAAApΛΛ则称)(Ap为事件A的概率.(ii)公理化定义的意义:事件概率的统计定义、古典概率定义、几何概率定义在一定的范围内解决了某些实际问题,但这几种概率的定义都存在着应用上的局限性,缺乏数学定义的严密性与一般性.经过长期的研究,到1933年,苏联数学家柯尔莫哥洛夫在总结了前人的研究成果的基础上,提出了概率的公理化体系,明确定义了概率的基本概念,使概率论成为一门严谨的数学分支。(5)重点讲解概率的性质及应用。性质1和性质2比较显然,直接给出,可不证,性质3(说明对立事件的应用)、性质4和性质5给出证明,并举出应用的例子。性质5(加法定理)给出三个事件的情形(可根据图形让学生自己总结)进而推广到n个事件的情形。(20分钟)概率的性质及证明:性质1:0)(=φp;性质2:(有限可加性)设有限个事件nAAA,,,Λ21两两相斥,则∑==+++=+++niinnApApApApAAAp12121)()()()()(ΛΛ性质3:对任何事件A,有)(1)(ApAp-=.证明:由φ=AA且Ω=AAY,由性质2有)()()()(ApApAApp+==ΩY即:?=+1)()(ApAp)(1)(ApAp-=.性质4:设BA、为两个事件,且AB?,则)()()(BpApBAp-=-.证明:因为AB?,所以)(BABA-=Y且φ=-BBA)(,由可加性得)()()]([)(BApBpBABpAp-+=-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国医药包装材料数据监测研究报告
- 2024年中国蒸蛋盘市场调查研究报告
- 2024年中国啤线刀具市场调查研究报告
- 第七组-苏家坪隧道开挖
- 口语之路从此不普通-学生口语提升全攻略
- 基于模糊综合评价法的某型布雷装备系统效能评估
- 学期阶段性教学总结计划
- 学校艺术课程的跨专业融合计划
- 大学艺术,一年制油画教学计划书
- 村委会升国旗仪式活动计划书
- 无人机测试与评估标准
- 电力工业发展介绍
- 碧桂园的财务风险分析与防范措施
- 《老年社会工作》课件-老年社会生活相关理论及应用
- (高清版)WST 813-2023 手术部位标识标准
- 微型德育课《对垃圾食品说不》
- 冶金煤气安全生产培训课件
- 集合论和逻辑
- 审查易系统操作指南
- 旅游业中的智能旅游定制平台
- 拼音四线三格A4打印版
评论
0/150
提交评论