2019高三数学(人教A版理)一轮教师用书第4章第2节 平面向量的基本定理及坐标表示_第1页
2019高三数学(人教A版理)一轮教师用书第4章第2节 平面向量的基本定理及坐标表示_第2页
2019高三数学(人教A版理)一轮教师用书第4章第2节 平面向量的基本定理及坐标表示_第3页
2019高三数学(人教A版理)一轮教师用书第4章第2节 平面向量的基本定理及坐标表示_第4页
2019高三数学(人教A版理)一轮教师用书第4章第2节 平面向量的基本定理及坐标表示_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二节平面向量的基本定理及坐标表示[考纲](教师用书独具)1.了解平面向量的基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.(对应学生用书第71页)[基础知识填充]1.平面向量基本定理(1)定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.(2)基底:不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=eq\r(x\o\al(2,1)+y\o\al(2,1)).(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则eq\o(AB,\s\up6(→))=(x2-x1,y2-y1),|eq\o(AB,\s\up6(→))|=eq\r(x2-x12+y2-y12).3.平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中a≠0,b≠0.a,b共线⇔x1y2-x2y1=0.[知识拓展]1.若a与b不共线,λa+μb=0,则λ=μ=0.2.设a=(x1,y1),b=(x2,y2),如果x2≠0,y2≠0,则a∥b⇔eq\f(x1,x2)=eq\f(y1,y2).[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内的任何两个向量都可以作为一组基底.()(2)在△ABC中,设eq\o(AB,\s\up6(→))=a,eq\o(BC,\s\up6(→))=b,则向量a与b的夹角为∠ABC.()(3)若a,b不共线,且λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2.()(4)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.()(5)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可表示成eq\f(x1,x2)=eq\f(y1,y2).()(6)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.()[答案](1)×(2)×(3)√(4)√(5)×(6)√2.已知平面向量a=(2,-1),b=(1,3),那么|a+b|等于()A.5 B.eq\r(13)C.eq\r(17) D.13B[因为a+b=(2,-1)+(1,3)=(3,2),所以|a+b|=eq\r(32+22)=eq\r(13).]3.设e1,e2是平面内一组基底,若λ1e1+λ2e2=0,则λ1+λ2=________.0[假设λ1≠0,由λ1e1+λ2e2=0,得e1=-eq\f(λ2,λ1)e2,∴e1与e2共线,这与e1,e2是平面内一组基底矛盾,故λ1=0,同理,λ2=0,∴λ1+λ2=0.]4.(2016·全国卷Ⅱ)已知向量a=(m,4),b=(3,-2),且a∥b,则m=________.-6[∵a=(m,4),b=(3,-2),a∥b,∴-2m-4×3=0,∴m=-6.]5.(教材改编)已知▱ABCD的顶点A(-1,-2),B(3,-1),C(5,6),则顶点D的坐标为________.(1,5)[设D(x,y),则由eq\o(AB,\s\up6(→))=eq\o(DC,\s\up6(→)),得(4,1)=(5-x,6-y),即eq\b\lc\{\rc\(\a\vs4\al\co1(4=5-x,,1=6-y,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(x=1,,y=5.))](对应学生用书第72页)平面向量基本定理及其应用(1)如图4­2­1,在三角形ABC中,BE是边AC的中线,O是BE边的中点,若eq\o(AB,\s\up6(→))=a,eq\o(AC,\s\up6(→))=b,则eq\o(AO,\s\up6(→))=()图4­2­1A.eq\f(1,2)a+eq\f(1,2)b B.eq\f(1,2)a+eq\f(1,3)bC.eq\f(1,4)a+eq\f(1,2)b D.eq\f(1,2)a+eq\f(1,4)b(2)在平行四边形ABCD中,E和F分别是边CD和BC的中点,若eq\o(AC,\s\up6(→))=λeq\o(AE,\s\up6(→))+μeq\o(AF,\s\up6(→)),其中λ,μ∈R,则λ+μ=________.(1)D(2)eq\f(4,3)[(1)∵在三角形ABC中,BE是AC边上的中线,∴eq\o(AE,\s\up6(→))=eq\f(1,2)eq\o(AC,\s\up6(→)).∵O是BE边的中点,∴eq\o(AO,\s\up6(→))=eq\f(1,2)(eq\o(AB,\s\up6(→))+eq\o(AE,\s\up6(→)))=eq\f(1,2)eq\o(AB,\s\up6(→))+eq\f(1,4)eq\o(AC,\s\up6(→))=eq\f(1,2)a+eq\f(1,4)b.(2)选择eq\o(AB,\s\up6(→)),eq\o(AD,\s\up6(→))作为平面向量的一组基底,则eq\o(AC,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→)),eq\o(AE,\s\up6(→))=eq\f(1,2)eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→)),eq\o(AF,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\f(1,2)eq\o(AD,\s\up6(→)),又eq\o(AC,\s\up6(→))=λeq\o(AE,\s\up6(→))+μeq\o(AF,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)λ+μ))eq\o(AB,\s\up6(→))+eq\b\lc\(\rc\)(\a\vs4\al\co1(λ+\f(1,2)μ))eq\o(AD,\s\up6(→)),于是得eq\b\lc\{\rc\(\a\vs4\al\co1(\f(1,2)λ+μ=1,,λ+\f(1,2)μ=1,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(λ=\f(2,3),,μ=\f(2,3),))∴λ+μ=eq\f(4,3).][规律方法]平面向量基本定理应用的实质和一般思路1应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.2用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.[跟踪训练]如图4­2­2,以向量eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b为邻边作▱OADB,eq\o(BM,\s\up6(→))=eq\f(1,3)eq\o(BC,\s\up6(→)),eq\o(CN,\s\up6(→))=eq\f(1,3)eq\o(CD,\s\up6(→)),用a,b表示eq\o(OM,\s\up6(→)),eq\o(ON,\s\up6(→)),eq\o(MN,\s\up6(→)).图4­2­2[解]∵eq\o(BA,\s\up6(→))=eq\o(OA,\s\up6(→))-eq\o(OB,\s\up6(→))=a-b,eq\o(BM,\s\up6(→))=eq\f(1,6)eq\o(BA,\s\up6(→))=eq\f(1,6)a-eq\f(1,6)b,∴eq\o(OM,\s\up6(→))=eq\o(OB,\s\up6(→))+eq\o(BM,\s\up6(→))=eq\f(1,6)a+eq\f(5,6)b.∵eq\o(OD,\s\up6(→))=a+b,∴eq\o(ON,\s\up6(→))=eq\o(OC,\s\up6(→))+eq\f(1,3)eq\o(CD,\s\up6(→))=eq\f(1,2)eq\o(OD,\s\up6(→))+eq\f(1,6)eq\o(OD,\s\up6(→))=eq\f(2,3)eq\o(OD,\s\up6(→))=eq\f(2,3)a+eq\f(2,3)b,∴eq\o(MN,\s\up6(→))=eq\o(ON,\s\up6(→))-eq\o(OM,\s\up6(→))=eq\f(2,3)a+eq\f(2,3)b-eq\f(1,6)a-eq\f(5,6)b=eq\f(1,2)a-eq\f(1,6)b.综上,eq\o(OM,\s\up6(→))=eq\f(1,6)a+eq\f(5,6)b,eq\o(ON,\s\up6(→))=eq\f(2,3)a+eq\f(2,3)b,eq\o(MN,\s\up6(→))=eq\f(1,2)a-eq\f(1,6)b.平面向量的坐标运算已知A(-2,4),B(3,-1),C(-3,-4).设eq\o(AB,\s\up6(→))=a,eq\o(BC,\s\up6(→))=b,eq\o(CA,\s\up6(→))=c,且eq\o(CM,\s\up6(→))=3c,eq\o(CN,\s\up6(→))=-2b,(1)求3a+b-3c;(2)求满足a=mb+nc的实数m,n;(3)求M,N的坐标及向量eq\o(MN,\s\up6(→))的坐标.【导学号:97190151】[解]由已知得a=(5,-5),b=(-6,-3),c=(1,8).(1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵mb+nc=(-6m+n,-3m+8n),∴eq\b\lc\{\rc\(\a\vs4\al\co1(-6m+n=5,,-3m+8n=-5,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(m=-1,,n=-1.))(3)设O为坐标原点.∵eq\o(CM,\s\up6(→))=eq\o(OM,\s\up6(→))-eq\o(OC,\s\up6(→))=3c,∴eq\o(OM,\s\up6(→))=3c+eq\o(OC,\s\up6(→))=(3,24)+(-3,-4)=(0,20).∴M(0,20).又∵eq\o(CN,\s\up6(→))=eq\o(ON,\s\up6(→))-eq\o(OC,\s\up6(→))=-2b,∴eq\o(ON,\s\up6(→))=-2b+eq\o(OC,\s\up6(→))=(12,6)+(-3,-4)=(9,2),∴N(9,2),∴eq\o(MN,\s\up6(→))=(9,-18).[规律方法]平面向量坐标运算的技巧1利用向量加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.2解题过程中,常利用“向量相等,则坐标相同”这一结论,由此可列方程组进行求解.[跟踪训练](1)已知四边形ABCD的三个顶点A(0,2),B(-1,-2),C(3,1),且eq\o(BC,\s\up6(→))=2eq\o(AD,\s\up6(→)),则顶点D的坐标为()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(2,\f(7,2))) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(2,-\f(1,2)))C.(3,2) D.(1,3)(2)在△ABC中,点P在BC上,且eq\o(BP,\s\up6(→))=2eq\o(PC,\s\up6(→)),点Q是AC的中点,若eq\o(PA,\s\up6(→))=(4,3),eq\o(PQ,\s\up6(→))=(1,5),则eq\o(BC,\s\up6(→))=()A.(-2,7) B.(-6,21)C.(2,-7) D.(6,-21)(1)A(2)B[(1)设D(x,y),eq\o(AD,\s\up6(→))=(x,y-2),eq\o(BC,\s\up6(→))=(4,3),又eq\o(BC,\s\up6(→))=2eq\o(AD,\s\up6(→)),∴eq\b\lc\{\rc\(\a\vs4\al\co1(4=2x,,3=2y-2,))∴eq\b\lc\{\rc\(\a\vs4\al\co1(x=2,,y=\f(7,2),))故选A.(2)∵eq\o(BP,\s\up6(→))=2eq\o(PC,\s\up6(→)),∴eq\o(BC,\s\up6(→))=3eq\o(PC,\s\up6(→))=3(eq\o(PA,\s\up6(→))+eq\o(AC,\s\up6(→))).∵Q是AC的中点,∴eq\o(AC,\s\up6(→))=2eq\o(AQ,\s\up6(→)),又eq\o(AQ,\s\up6(→))=eq\o(AP,\s\up6(→))+eq\o(PQ,\s\up6(→)),∴eq\o(BC,\s\up6(→))=3[eq\o(PA,\s\up6(→))+2(eq\o(AP,\s\up6(→))+eq\o(PQ,\s\up6(→)))]=(-6,21).]平面向量共线的坐标表示已知a=(1,0),b=(2,1).(1)当k为何值时,ka-b与a+2b共线;(2)若eq\o(AB,\s\up6(→))=2a+3b,eq\o(BC,\s\up6(→))=a+mb,且A,B,C三点共线,求m的值.[解](1)∵a=(1,0),b=(2,1),∴ka-b=k(1,0)-(2,1)=(k-2,-1),a+2b=(1,0)+2(2,1)=(5,2),∵ka-b与a+2b共线,∴2(k-2)-(-1)×5=0,∴k=-eq\f(1,2).(2)eq\o(AB,\s\up6(→))=2(1,0)+3(2,1)=(8,3),eq\o(BC,\s\up6(→))=(1,0)+m(2,1)=(2m+1,m).∵A,B,C三点共线,∴eq\o(AB,\s\up6(→))∥eq\o(BC,\s\up6(→)),∴8m-3(2m+1)=0,∴m=eq\

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论