![8.2 函数与数学模型【导学案学生版】_第1页](http://file4.renrendoc.com/view12/M04/1C/24/wKhkGWcoE8iAdOz-AAGxaBcY7eE402.jpg)
![8.2 函数与数学模型【导学案学生版】_第2页](http://file4.renrendoc.com/view12/M04/1C/24/wKhkGWcoE8iAdOz-AAGxaBcY7eE4022.jpg)
![8.2 函数与数学模型【导学案学生版】_第3页](http://file4.renrendoc.com/view12/M04/1C/24/wKhkGWcoE8iAdOz-AAGxaBcY7eE4023.jpg)
![8.2 函数与数学模型【导学案学生版】_第4页](http://file4.renrendoc.com/view12/M04/1C/24/wKhkGWcoE8iAdOz-AAGxaBcY7eE4024.jpg)
![8.2 函数与数学模型【导学案学生版】_第5页](http://file4.renrendoc.com/view12/M04/1C/24/wKhkGWcoE8iAdOz-AAGxaBcY7eE4025.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学精选资源2/2第8章 函数应用第02讲函数与数学模型目标导航目标导航课程标准重难点理解“指数爆炸”的含义;掌握函数增长速度的差异;掌握函数增长速度的比较;理解并掌握函数增长速度的应用.1.函数增长速度的比较2.函数增长速度的应用3.利用函数模型解决实际问题4.实际问题中函数模型的选择问题知识精讲知识精讲一、常见的几种函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)分段函数模型f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(f1x,x∈D1,f2x,x∈D2,……,fnx,x∈Dn))二、解决函数应用问题的一般步骤(1)利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(一)审题;(二)建模;(三)求模;(四)还原.(2)这些步骤用框图表示如图:【思考】一次函数模型、二次函数模型、幂函数模型的选取的标准是什么?它们的增长速度是如何变化的?三、函数模型的应用几种常见函数模型函数模型函数解析式一次函数模型f(x)=kx+b(k,b为常数,k≠0)反比例函数模型f(x)=+b(k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数型函数模型f(x)=bax+c(a,b,c为常数,b≠0,a>0且a≠1)对数型函数模型f(x)=blogax+c(a,b,c为常数,b≠0,a>0且a≠1)幂函数型模型f(x)=axn+b(a,b为常数,a≠0)参考答案二、一次函数模型y=kx+b(k>0)增长特点是直线上升,增长速度不变.二次函数模型y=ax2+bx+c(a≠0)的最值容易求出,常常用于最优、最省等最值问题,幂函数y=axn+b(x>0,n>0,a>0)随x的增大而增大,但增长的速度相对平稳,图象随n的变化而变化.能力拓展能力拓展考法01一次函数模型(1)一次函数模型应用时,本着“问什么,设什么,列什么”这一原则.(2)一次函数求最值,常转化为求解不等式ax+b≥0(或≤0),解答时,注意系数a的正负,也可以结合函数图象或其单调性来求最值.例1某电脑公司在甲、乙两地各有一个分公司,甲分公司有电脑6台,乙分公司现有同一型号的电脑12台.现A地某单位向该公司购买该型号的电脑10台,B地某单位向该公司购买该型号的电脑8台.已知从甲地运往A,B两地每台电脑的运费分别是40元和30元,从乙地运往A,B两地每台电脑的运费分别是80元和50元例1(1)设甲地调运x台至B地,该公司运往A,B两地的总运费为y元,求y关于x的函数解析式;(2)若总运费不超过1000元,问能有几种调运方案?【跟踪训练】某种产品每件80元,每天可售出30件,如果每件定价120元,则每天可售出20件,如果售出件数是定价的一次函数,则这个函数解析式为________.考法02二次函数模型利用二次函数求最值的方法及注意点(1)方法:根据实际问题建立函数模型解析式后,可利用配方法、判别式法、换元法利用函数的单调性等方法求最值,从而解决实际问题中的利润最大、用料最省等最值问题.(2)注意:取得最值的自变量与实际意义是否相符.例2一块形状为直角三角形的铁皮,直角边长分别是40cm与60cm,现在将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪才能使剩下的残料最少?并求出此时残料的面积.例2【名师指点】解含参数的一元二次不等式的步骤特别提醒:对应方程的根优先考虑用因式分解确定,分解不开时再求判别式Δ,用求根公式计算.【跟踪训练】A,B两城相距100km,在两地之间距A城xkm处D地建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得少于10km,已知每个城市的供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A城供电量为20亿度/月,B城为10亿度/月.(1)把A,B两城月供电总费用y(万元)表示成x(km)的函数,并求定义域;(2)核电站建在距A城多远,才能使供电总费用最小.考法03分段函数模型应用分段函数时的三个注意点(1)分段函数的“段”一定要分得合理,不重不漏.(2)分段函数的定义域为对应每一段自变量取值范围的并集.(3)分段函数的值域求法为:逐段求函数值的范围,最后比较再下结论.例3例3(1)写出每人需交费用y关于人数x的函数;(2)旅行团人数为多少时,旅行社可获得最大利润?【跟踪训练】某游乐场每天的盈利额y元与售出的门票张数x之间的函数关系如图所示,试由图象解决下列问题:(1)求y与x的函数解析式;(2)要使该游乐场每天的盈利额超过1000元,每天至少卖出多少张门票?考法04指数型模型的应用指数函数模型的应用1.在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常可以用指数函数模型表示.通常可以表示为y=N(1+p)x(其中N为基础数,p为增长率,x为时间)的形式.2.解答数学应用题应过的三关(1)理解关:数学应用题的文字阅读量较大,需要通过阅读找出关键词、句,确定已知条件是什么,要解决的问题是什么.(2)建模关:将实际问题的文字语言转化成数学符号语言,用数学式子表达文字关系,进而建立实际问题的数学模型,将其转化成数学问题.(3)数理关:建立实际问题的数学模型时,要运用恰当的数学方法.例4(链接教材P148例4(1)求t年后,这种放射性元素的质量w的表达式;(2)由求出的函数表达式,求这种放射性元素的半衰期(结果精确到0.1).即这种放射性元素的半衰期为6.6年.
【跟踪训练】设在海拔xm处的大气压强为ykPa,y与x的函数关系可近似表示为y=100eax,已知在海拔1000m处的大气压强为90kPa,则根据函数关系式,在海拔2000m处的大气压强为________kPa.考法05对数型模型的应用对数函数应用题的基本类型和求解策略:(1)基本类型:有关对数函数的应用题一般都会给出函数的解析式,然后根据实际问题求解;(2)求解策略:首先根据实际情况求出函数解析式中的参数,或根据给出的具体情境,从中提炼出数据,代入解析式求值,然后根据数值回答其实际意义.例5大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现鲑鱼的游速可以表示为函数v=eq\f(1,2)log3eq\f(θ,100),单位是m/s,θ是表示鱼的耗氧量的单位数.例5(1)当一条鲑鱼的耗氧量是900个单位时,它的游速是多少?(2)某条鲑鱼想把游速提高1m/s,那么它的耗氧量的单位数是原来的多少倍?[母题探究](变设问)若本例条件不变:(1)当一条鲑鱼的耗氧量是8100个单位时,它的游速是多少?(2)求一条鲑鱼静止时耗氧量的单位数.【跟踪训练】某公司为了业务发展制订了一个激励销售人员的奖励方案,在销售额x为8万元时,奖励1万元;销售额x为64万元时,奖励4万元.若公司拟定的奖励模型为y=alog4x+b.某业务员要得到8万元奖励,则他的销售额应为________万元.考法06建立拟合函数模型解决实际问题例6为了估计山上积雪融化后对下游灌溉的影响,在山上建立了一个观察站,测量最大积雪深度x与当年灌溉面积y例6年序最大积雪深度x(cm)灌溉面积y(公顷)115.228.6210.421.1321.240.5418.636.6526.449.8623.445.0713.529.2816.734.1924.045.81019.136.9(1)描点画出灌溉面积随积雪深度变化的图象;(2)建立一个能基本反映灌溉面积变化的函数模型,并画出图象;(3)根据所建立的函数模型,估计若今年最大积雪深度为25cm,则可以灌溉土地多少公顷?【跟踪训练】某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=eq\f(x2,5)-48x+8000,已知此生产线年产量最大为210吨.若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?分层提分分层提分题组A基础过关练1.毛衣柜里的樟脑丸会随着时间挥发而体积缩小,刚放进的新丸体积为,经过天后体积与天数的关系式为.若新丸经过50天后,体积变为,则一个新丸体积变为需经过的时间为()A.125天 B.100天 C.75天 D.50天2.“绿水青山就是金山银山”,党的十九大以来,城乡深化河道生态环境治理,科学治污.某乡村一条污染河道的蓄水量为立方米,每天的进出水量为立方米.已知污染源以每天个单位污染河水,某一时段(单位:天)河水污染质量指数为(每立方米河水所含的污染物)满足(为初始质量指数),经测算,河道蓄水量是每天进出水量的80倍.若从现在开始关闭污染源,要使河水的污染水平下降到初始时的10%,需要的时间大约是(参考数据:)()A.1个月 B.3个月 C.半年 D.1年3.核酸检测分析是用荧光定量法,通过化学物质的荧光信号,对在扩增进程中成指数级增加的靶标实时监测,在扩增的指数时期,荧光信号强度达到阈值时,的数量与扩增次数满足,其中为扩增效率,为的初始数量.已知某被测标本扩增次后,数量变为原来的倍,那么该样本的扩增效率约为()(参考数据:,)A.0.369 B.0.415 C.0.585 D.0.6314.某医药研究所研发了一种治疗某疾病的新药,服药后,当每毫升血液中含药量不少于0.25毫克时,治疗疾病有效.据监测,服药后每毫升血液中的含药量y(单位:毫克)与时间t(单位:时)之间满足如图所示的曲线,则服药一次后治疗疾病的有效时间为()A. B. C.5 D.65.视力检测结果有两种记录方式,分别是小数记录与五分记录,其部分数据如下表:小数记录五分记录现有如下函数模型:①,②,表示小数记录数据,表示五分记录数据,请选择最合适的模型解决如下问题:小明同学检测视力时,医生告诉他的视力为,则小明同学的小数记录数据为(附,,)()A. B. C. D.6.某化工厂对产生的废气进行过滤后排放,过滤过程中废气的污染物含量(单位:)与时间(单位:)间的关系为:,其中是正的常数.如果在前消除了的污染物,则污染物减少需要花费的时间为()(精确到,参考数据)A.30 B.31 C.32 D.337.为了保护水资源,提倡节约用水,某城市对居民实行“阶梯水价”,计费方法如下表:每户每月用水量水价不超过的部分3元/超过但不超过的部分6元/超过的部分9元/若某户居民本月交纳的水费为54元,则此户居民的用水量为()A. B. C. D.8.单位时间内通过道路上指定断面的车辆数被称为“道路容量”,与道路设施、交通服务、环境、气候等诸多条件相关.假设某条道路一小时通过的车辆数满足关系,其中为安全距离,为车速.当安全距离取时,该道路一小时“道路容量”的最大值约为()A.135 B.149C.165 D.195所以该道路一小时“道路容量”的最大值约为149.故选:B题组B能力提升练1.某市出租车收费标准如下:起步价为8元,起步里程为(不超过按起步价付费);超过但不超过时,超过部分按每千米2.15元收费;超过时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元,下列结论正确的是()A.出租车行驶,乘客需付费8元B.出租车行驶,乘客需付费9.6元C.出租车行驶,乘客需付费25.45元D.某人两次乘出租车均行驶的费用之和超过他乘出租车行驶一次的费用2.如图,某池塘里浮萍的面积(单位:)与时间(单位:月)的关系为,关于下列说法正确的是()A.浮萍每月的增长率为2B.浮萍每月增加的面积都相等C.第4个月时,浮萍面积超过D.若浮萍蔓延到所经过的时间分别是,则3.已知每生产100克饼干的原材料加工费为1.8元,某食品加工厂对饼干采用两种包装,其包装费用、销售价格如表所示:型号小包装大包装质量100克300克包装费0.5元0.7元销售价格3.00元8.4元则下列说法正确的是()A.买小包装实惠B.买大包装实惠C.卖3小包比卖1大包盈利多D.卖1大包比卖3小包盈利多4.创新是一个民族的灵魂,国家大力提倡大学毕业生自主创业,以创业带动就业,有利于培养大学生的创新精神.小李同学大学毕业后,决定利用所学专业进行自主创业.经过调查,生产某小型电子产品需投入年固定成本5万元,每年生产x万件,需另投入流动成本C(x)万元,在年产量不足8万件时,(万元);在年产量不小于8万件时,(万元).每件产品售价为10元,经分析,生产的产品当年能全部售完.(1)写出年利润P(x)(万元)关于年产量x(万件)的函数解析式(年利润=年销售收入-固定成本-流动成本).(2)年产量为多少万件时,小李在这一产品的生产中所获利润最大?最大利润是多少?5.自新冠病毒爆发以后,各国科技人员都在攻关疫苗的难题,近日我国在这一领域取得重大突破,国产疫苗在国际上受到广泛认可.我国在实验阶段为了研究T型病毒的变化规律,将T型病毒注入一个健康的小白鼠体内,根据观测统计的数据分析,小白鼠体内的病毒数y与天数n近似满足.已知T型病毒在体内超过109个时,小白鼠就会死亡,但如果注射了某种药物可有效杀死体内的T型病毒,为使小白鼠在实验过程中不会死亡,第一次注射该种药物最迟应在第___________天(参考数据:).6.据观测统计,某湿地公园某种珍稀鸟类以平均每年4%的速度增加.按这个增长速度,大约经过___________年以后,这种鸟类的个数达到现有个数的4倍或4倍以上.(结果保留整数)(参考数据:)7.数学建模小组检测到相距3米的A,B两光源的强度分别为a,b,异于A,B的线段上任意一点C处的光强度y等于两光源到该处的强度之和,设米.(1)假设某处的光强度与光源的强度成正比,与到光源的距离的平方成反比,比例系数为常数,测得数据:当时,;当时,,求A,B两处的光强度,并写出函数的解析式;(2)假设某处的光强度与光源的强度成正比,与到光源的距离成反比,比例系数为常数,测得数据:当时,;当时,,问何处的光强度最弱?并求最弱处的光强度.8.为了响应国家提出的“大众创业,万众创新”的号召,王韦达同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产某小型电子产品需投入年固定成本为2万元,每生产x万件,需另投入可变成本万元,在年产量不足8万件时,(万元);在年产量不小于8万件时,(万元).每件产品售价为7元,假设小王生产的商品当年全部售完.(1)写出年利润(万元)关于年产量x(万件)的函数解析式(注:年利润年销售收入固定成本可变成本);(2)年产量x为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?题组C培优拔尖练1.咖啡产品的经营和销售如何在中国开拓市场是星巴克、漫咖啡等欧美品牌一直在探索的内容,而2018年至今中国咖啡行业的发展实践证明了以优质的原材料供应以及大量优惠券、买赠活动吸引消费者无疑是开拓中国咖啡市场最有效的方式之一.若某品牌的某种在售咖啡产品价格为30元/杯,其原材料成本为7元/杯,营销成本为5元/杯,且该品牌门店提供如下4种优惠方式:(1)首杯免单,每人限用一次;(2)3.8折优惠券,每人限用一次;(3)买2杯送2杯,每人限用两次;(4)买5杯送5杯,不限使用人数和使用次数.每位消费者都可以在以上4种优惠方式中选择不多于2种使用.现在某个公司有5位后勤工作人员去该品牌门店帮每位技术人员购买1杯咖啡,购买杯数与技术人员人数须保持一致;请问,这个公司的技术人员不少于()人时,无论5位后勤人员采用什么样的优惠方式购买咖啡,这笔订单该品牌门店都能保证盈利.A.28 B.29 C.30 D.312.(5分)为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等.劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,为的面积,将称为基尼系数.对于下列说法:①越小,则国民分配越公平;②设劳伦茨曲线对应的函数为,则对,均有;③若某国家某年的劳伦茨曲线近似为,则;④若某国家某年的劳伦茨曲线近似为,则.其中正确的是:A.①④ B.②③ C.①③④ D.①②④3.某厂商为推销自己品牌的可乐,承诺在促销期内,可以用3个该品牌的可乐空罐换1罐可乐.对于此促销活动,有以下三个说法:①如果购买10罐可乐,那么实际最多可以饮13罐可乐;②欲饮用100
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国钼丝探伤仪行业投资前景及策略咨询研究报告
- 2025至2031年中国蝎子行业投资前景及策略咨询研究报告
- 2025年男子氧化标枪项目可行性研究报告
- 2025至2031年中国环类锻件行业投资前景及策略咨询研究报告
- 2025年改性丙烯酸水性卓面漆项目可行性研究报告
- 2025年工程机械万向节项目可行性研究报告
- 2025年内旋转式浓度变送器项目可行性研究报告
- 2025至2030年中国DL-肉毒碱盐酸盐数据监测研究报告
- 2025至2030年高强玻璃纤维纱项目投资价值分析报告
- 2025至2030年中国铝材专用锯数据监测研究报告
- 国际商务谈判双语版课件(完整版)
- DBJ∕T 15-129-2017 集中空调制冷机房系统能效监测及评价标准
- 闽教版(2020版)六年级下册信息技术整册教案
- 物业管理应急预案工作流程图
- (高清正版)T_CAGHP 003—2018抗滑桩治理工程设计规范 (试行)
- 装饰装修工程施工合理化建议和降低成本措施提要:完整
- 毕业论文论财务管理是企业管理的核心
- 清洁化施工无土化安装施工方案
- 物业小区常规保洁工作程序
- 食管癌化疗临床路径(最全版)
- 失业保险知识PPT课件
评论
0/150
提交评论