![2025届江苏省常州市常州高级中学分校高二上数学期末复习检测试题含解析_第1页](http://file4.renrendoc.com/view12/M06/0B/08/wKhkGWcnr52AaQH5AAJFb_f5yi0113.jpg)
![2025届江苏省常州市常州高级中学分校高二上数学期末复习检测试题含解析_第2页](http://file4.renrendoc.com/view12/M06/0B/08/wKhkGWcnr52AaQH5AAJFb_f5yi01132.jpg)
![2025届江苏省常州市常州高级中学分校高二上数学期末复习检测试题含解析_第3页](http://file4.renrendoc.com/view12/M06/0B/08/wKhkGWcnr52AaQH5AAJFb_f5yi01133.jpg)
![2025届江苏省常州市常州高级中学分校高二上数学期末复习检测试题含解析_第4页](http://file4.renrendoc.com/view12/M06/0B/08/wKhkGWcnr52AaQH5AAJFb_f5yi01134.jpg)
![2025届江苏省常州市常州高级中学分校高二上数学期末复习检测试题含解析_第5页](http://file4.renrendoc.com/view12/M06/0B/08/wKhkGWcnr52AaQH5AAJFb_f5yi01135.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省常州市常州高级中学分校高二上数学期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线,,若,则实数的值是()A.0 B.2或-1C.0或-3 D.-32.直线的一个方向向量为,则它的斜率为()A. B.C. D.3.《张邱建算经》记载:今有女子不善织布,逐日织布同数递减,初日织五尺,末一日织一尺,计织三十日,问第11日到第20日这10日共织布()A.30尺 B.40尺C.6尺 D.60尺4.已知平面法向量为,,则直线与平面的位置关系为A. B.C.与相交但不垂直 D.5.意大利数学家斐波那契的《算经》中记载了一个有趣的数列:1,1,2,3,5,8,13,21,34,55,89,144,……,这就是著名的斐波那契数列,该数列的前2022项中有()个奇数A.1012 B.1346C.1348 D.13506.设,,,则,,大小关系是A. B.C. D.7.已知椭圆的一个焦点坐标为,则的值为()A.1 B.3C.9 D.818.从编号为1~120的商品中利用系统抽样的方法抽8件进行质检,若所抽样本中含有编号66的商品,则下列编号一定被抽到的是()A.111 B.52C.37 D.89.如图,点A的坐标为,点C的坐标为,函数,若在矩形内随机取一点,则此点取自阴影部分的概率等于()A. B.C. D.10.某校开展研学活动时进行劳动技能比赛,通过初选,选出共6名同学进行决赛,决出第1名到第6名的名次(没有并列名次),和去询问成绩,回答者对说“很遗㙳,你和都末拿到冠军;对说“你当然不是最差的”.试从这个回答中分析这6人的名次排列顺序可能出现的结果有()A.720种 B.600种C.480种 D.384种11.设等差数列的公差为d,且,则()A.12 B.4C.6 D.812.已知1与5的等差中项是,又1,,,8成等比数列,公比为,则的值为()A.5 B.4C.3 D.6二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项和,则该数列的首项__________,通项公式__________.14.设a为实数,若直线与直线平行,则a值为______.15.正三棱柱的底面边长和高均为2,点为侧棱的中点,连接,,则点到平面的距离为______.16.如图所示四棱锥,底面ABCD为直角梯形,,,,,是底面ABCD内一点(含边界),平面MBD,则点O轨迹的长度为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题p:点在椭圆内;命题q:函数在R上单调递增(1)若p为真命题,求m的取值范围;(2)若为假命题,求实数m的取值范围18.(12分)(1)求函数的单调区间.(2)用向量方法证明:已知直线l,a和平面,,,,求证:.19.(12分)已知圆.(1)过点作圆的切线,求切线的方程;(2)若直线过点且被圆截得的弦长为2,求直线的方程.20.(12分)如图,四棱锥P-ABCD中,PA平面ABCD,,∠BAD=120o,AB=AD=2,点M在线段PD上,且DM=2MP,平面(1)求证:平面MAC平面PAD;(2)若PA=6,求平面PAB和平面MAC所成锐二面角的余弦值21.(12分)已知数列的首项,且满足.(1)求证:数列是等比数列;(2)求数列的前n项和.22.(10分)已知三棱柱的侧棱垂直于底面,,,,,分别是,的中点.(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由,结合两直线一般式有列方程求解即可.【详解】由知:,解得:或故选:C.2、A【解析】根据的方向向量求得斜率.【详解】且是直线的方向向量,.故选:A3、A【解析】由题意可知,每日的织布数构成等差数列,由等差数列的求和公式得解.【详解】由题女子织布数成等差数列,设第日织布为,有,所以,故选:A.4、A【解析】.本题选择A选项.5、C【解析】由斐波那契数列的前几项分析该数列的项的奇偶规律,由此确定该数列的前2022项中的奇数的个数.【详解】由已知可得为奇数,为奇数,为偶数,因为,所以为奇数,为奇数,为偶数,…………所以为奇数,为奇数,为偶数,又故该数列的前2022项中共有1348个奇数,故选:C.6、A【解析】构造函数,根据的单调性可得(3),从而得到,,的大小关系【详解】考查函数,则,在上单调递增,,(3),即,,故选:【点睛】本题考查了利用函数的单调性比较大小,考查了构造法和转化思想,属基础题7、A【解析】根据条件,利用椭圆标准方程中长半轴长a,短半轴长b,半焦距c关系列式计算即得.【详解】由椭圆的一个焦点坐标为,则半焦距c=2,于是得,解得,所以值为1.故选:A8、A【解析】先求出等距抽样的组距,从而得到被抽到的是,从而求出答案.【详解】120件商品中抽8件,故,因为含有编号66的商品被抽到,故其他能被抽到的是,当时,,其他三个选项均不合要求,故选:A9、A【解析】分别由矩形面积公式与微积分几何意义计算阴影部分和矩形部分的面积,最后由几何概型概率计算公式计算即可.【详解】由已知,矩形的面积为4,阴影部分的面积为,由几何概型公式可得此点取自阴影部分的概率等于,故选:A10、D【解析】不是第一名且不是最后一名,的限制最多,先排有4种情况,再排,也有4种情况,余下的问题是4个元素在4个位置全排列,根据分步计数原理求解即可【详解】由题意,不是第一名且不是最后一名,的限制最多,故先排,有4种情况,再排,也有4种情况,余下4人有种情况,利用分步相乘计数原理知有种情况故选:D.11、B【解析】利用等差数列的通项公式的基本量计算求出公差.【详解】,所以.故选:B12、A【解析】由等差中项的概念列式求得值,再由等比数列的通项公式列式求解,则答案可求.【详解】由题意,,则;又1,,,8成等比数列,公比为,,即,,故选:.二、填空题:本题共4小题,每小题5分,共20分。13、①.;②..【解析】空一:利用代入法直接进行求解即可;空二:利用之间的关系进行求解即可.【详解】空一:;空二:当时,,显然不适合上式,所以,故答案为:;14、【解析】根据两直线平行得到,解方程组即可求出结果.【详解】由题意可知,解得,故答案为:.15、【解析】建立空间直角坐标系,利用空间向量求点面距离的公式可以直接求出.【详解】如图,建立空间直角坐标系,为的中点,由已知,,,,,所以,,设平面的法向量为,,即:,取,得,,则点到平面的距离为.故答案为:.16、【解析】绘出如图所示的辅助线,然后通过平面平面得出点轨迹为线段,最后通过求出、的长度即可得出结果.【详解】如图,延长到点,使且,连接,取上点,使得,作,交于点,交于点,连接,因为,所以,因为,又,所以,,因为,,,所以平面平面,因为平面,面,所以点轨迹为线段,因为,,所以,因为,,,所以,因为底面为直角梯形,所以,,,,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意列不等式组求解(2)判断的真假性后分别求解【小问1详解】由题意得,解得且故m的取值范围是【小问2详解】∵为假命题,∴p和q都是真命题,对于命题q,由题意得:恒成立,∴,∴,∴,解得故m的取值范围是18、(1)的单调减区间为和,单调增区间为;(2)证明见解析.【解析】(1)求出导函数,由得增区间,由得减区间;(2)说明直线方向向量与平行的法向量垂直后可得【详解】(1)解:定义域为R,,,解得,.当或时,,当时,.所以的单调减区间为和,单调增区间为.(2)证明:在直线a上取非零向量,因为,所以是直线l的方向向量,设是平面的一个法向量,因为,所以.又,所以.19、(1);(2)或.【解析】(1)根据直线与圆相切,求得切线的斜率,利用点斜式即可写出切线方程;(2)利用弦长公式,结合已知条件求得直线的斜率,即可求得直线方程.【小问1详解】圆,圆心,半径,又点的坐标满足圆方程,故可得点在圆上,则切线斜率满足,又,故满足题意的切线斜率,则过点的切线方程为,即.【小问2详解】直线过点,若斜率不存在,此时直线的方程为,将其代入可得或,故直线截圆所得弦长为满足题意;若斜率存在时,设直线方程为,则圆心到直线的距离,由弦长公式可得:,解得,也即,解得,则此时直线的方程为:.综上所述,直线的方程为或.20、(1)证明见解析(2)【解析】(1)连接BD交AC于点E,连接ME,由所给条件推理出CA⊥AD,进而得CA⊥平面PAD,证得结论(2)首先以A为原点,射线AC,AD,AP分别为x,y,z轴非负半轴建立空间直角坐标系,再利用向量法求解二面角即可【小问1详解】(1)连接BD交AC于点E,连接ME,如图所示:∵平面MAC,PB平面PBD,平面PBD平面MAC=ME,∴,,则BC=1,而AB=2,,,∴AC2+BC2=4=AB2,∠ACB=90º,∠CAD=90º,即CA⊥AD,又PA⊥平面ABCD,CA平面ABCD,∴PA⊥CA,又PAAD=A,∴CA⊥平面PAD,而CA平面MAC,∴平面MAC⊥平面PAD【小问2详解】(2)如图所示:以A为原点,射线AC,AD,AP分别为x,y,z轴非负半轴建立空间直角坐标系,则,∴,设平面PAB和平面MAC的一个法向量分别为,平面PAB和平面MAC所成锐二面角为,∴,,∴.21、(1)证明见解析;(2)当为偶数时,;当为奇数时,.【解析】(1)根据等比数列的定义进行证明即可;(2)利用分组求和法,结合错位相减法进行求解即可.【小问1详解】由题知:所以又因为所以所以数列为以-1为首项,-1为公比的等比数列;【小问2详解】由(1)知:,所以,,记,所以,当为偶数时,;当为奇数时,;记两式相减得:,所以,所以,当偶数时,;当为奇数时,.22、(1)见解析;(2).【解析】分析:依题意可知两两垂直,以点为原点建立空间直角坐标系,(1)利用直线的方向向量和平面的法向量垂直,即可证得线面平面;(2)求出两个平面的法向量,利用两个向量的夹角公式,即可求解二面角的余弦值.详解:依条件可知、、两两垂直,如图,以点为原点建立空间直角坐标系.根据条件容易求出如下各点坐标:,,,,,,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度摊铺机租赁与操作培训合同范本
- 个人合伙的协议书(15篇)
- 设计方案评审函
- 2025年健身俱乐部事故免责合同
- 2025年人工智能合作协议书
- 2025年临时用电合作协议书规范文本
- 2025年飞机空调车ACM项目规划申请报告模稿
- 2025年共同经营商业地产合作协议
- 2025年短期劳动合同范例
- 2025年专利申请授权实施合同样本
- 古树名木保护建设项目可行性研究报告
- DB50-T 867.36-2022 安全生产技术规范+第36+部分:仓储企业
- 幼小衔接学拼音
- 结构化思维与表达课件
- 教学课件:《就业指导与创业教育》(中职)
- 有限空间辨识参考目录图片对照版
- 成本会计第一章总论
- 桥式起重机试验项目及其内容方法和要求
- 大小嶝造地工程陆域形成及地基处理标段1施工组织设计
- 肺断层解剖及CT图像(77页)
- GA∕T 1193-2014 人身损害误工期、护理期、营养期评定
评论
0/150
提交评论