山东省日照农业学校2025届高二上数学期末质量检测模拟试题含解析_第1页
山东省日照农业学校2025届高二上数学期末质量检测模拟试题含解析_第2页
山东省日照农业学校2025届高二上数学期末质量检测模拟试题含解析_第3页
山东省日照农业学校2025届高二上数学期末质量检测模拟试题含解析_第4页
山东省日照农业学校2025届高二上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省日照农业学校2025届高二上数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知两个向量,,且,则的值为()A.1 B.2C.4 D.82.直线在轴上的截距为()A.3 B.C. D.3.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是6”,丙表示事件“两次取出的球的数字之和是5”,丁表示事件“两次取出的球的数字之和是偶数”,则下列判断正确的是()A.甲与丙是互斥事件 B.乙与丙是对立事件C.甲与丁是对立事件 D.丙与丁是互斥事件4.过点且斜率为的直线方程为()A. B.C. D.5.已知不等式只有一个整数解,则m的取值范围是()A. B.C. D.6.设函数在R上可导,则()A. B.C. D.以上都不对7.如图,平行六面体中,与的交点为,设,则选项中与向量相等的是()A. B.C. D.8.在中,B=60°,,,则AC边的长等于()A. B.C. D.9.下列说法正确的是()A.空间中的任意三点可以确定一个平面B.四边相等的四边形一定是菱形C.两条相交直线可以确定一个平面D.正四棱柱的侧面都是正方形10.椭圆与(0<k<9)的()A.长轴的长相等B.短轴的长相等C.离心率相等D.焦距相等11.设,则有()A. B.C. D.12.如图是一水平放置的青花瓷.它的外形为单叶双曲面,可看成是双曲线的一部分绕其虚轴旋转所形成的曲面,且其外形上下对称.花瓶的最小直径为,瓶口直径为,瓶高为,则该双曲线的虚轴长为()A. B.C. D.45二、填空题:本题共4小题,每小题5分,共20分。13.如图,AD与BC是三棱锥中互相垂直的棱,,(c为常数).若,则实数的取值范围为__________.14.如图,在平行六面体中,底面是边长为1的正方形,的长度为2,且,则的长度为________15.已知直线和直线垂直,则实数___________.16.如图,椭圆的左、右焦点分别为,过椭圆上的点作轴的垂线,垂足为,若四边形为菱形,则该椭圆的离心率为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①,②,③,这三个条件中任选一个,补充在下面的问题中,并解答问题在中,内角A,,的对边分别为,,,且满足______________(1)求;(2)若的面积为,在边上,且,求的最小值注:如果选择多个条件分别解答,按第一个解答计分18.(12分)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求的值.19.(12分)若数列的前n项和满足,(1)求的通项公式;(2)设,求数列的前n项和20.(12分)若存在实常数k和b,使得函数和对其公共定义域上的任意实数x都满足:和恒成立,则称此直线y=kx+b为和的“隔离直线”.已知函数,.(1)证明函数在内单调递增;(2)证明和之间存在“隔离直线”,且b的最小值为-4.21.(12分)已知(1)求的最小正周期及单调递增区间;(2)已知钝角内角A,B,C的对边长分别a,b,c,若,,.求a的值22.(10分)已知函数.(1)若,求的极值;(2)若有两个零点,求实数a取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由,可知,使,利用向量的数乘运算及向量相等即可得解.【详解】∵,∴,使,得,解得:,所以故选:C【点睛】思路点睛:在解决有关平行的问题时,通常需要引入参数,如本题中已知,引入参数,使,转化为方程组求解;本题也可以利用坐标成比例求解,即由,得,求出m,n.2、A【解析】把直线方程由一般式化成斜截式,即可得到直线在轴上的截距.【详解】由,可得,则直线在轴上的截距为3.故选:A3、D【解析】根据互斥事件和对立事件的定义判断【详解】当第一次取出1,第二次取出4时,甲丙同时发生,不互斥不对立;第二次取出的球的数字是6与两次取出的球的数字之和是5不可能同时发生,但可以同时不发生,不对立,当第一次取出1,第二次取出3时,甲与丁同时发生,不互斥不对立,两次取出的球的数字之和是5与两次取出的球的数字之和是偶数不可以同时发生,但可以同时不发生,因此是互斥不对立故选:D4、B【解析】利用点斜式可得出所求直线的方程.【详解】由题意可知所求直线的方程为,即.故选:B.5、B【解析】依据导函数得到函数的单调性,数形结合去求解即可解决.【详解】不等式只有一个整数解,可化为只有一个整数解令,则当时,,单调递增;当时,,单调递减,则当时,取最大值,当时,恒成立,的草图如下:,,则若只有一个整数解,则,即故不等式只有一个整数解,则m的取值范围是故选:B6、B【解析】根据极限的定义计算【详解】由题意故选:B7、B【解析】利用空间向量加减法、数乘的几何意义,结合几何体有,进而可知与向量相等的表达式.【详解】连接,如下图示:,.故选:B8、B【解析】根据正弦定理直接计算可得答案.【详解】由正弦定理,,得,故选:B.9、C【解析】根据立体几何相关知识对各选项进行判断即可.【详解】对于A,根据公理2及推论可知,不共线的三点确定一个平面,故A错误;对于B,在一个平面内,四边相等的四边形才一定是菱形,故B错误;对于C,根据公理2及推论可知,两条相交直线可以确定一个平面,故C正确;对于D,正四棱柱指上、下底面都是正方形且侧棱垂直于底面的棱柱,侧面可以是矩形,故D错误.故选:C10、D【解析】根据椭圆方程求得两个椭圆的,由此确定正确选项.【详解】椭圆与(0<k<9)的焦点分别在x轴和y轴上,前者a2=25,b2=9,则c2=16,后者a2=25-k,b2=9-k,则显然只有D正确故选:D11、A【解析】利用作差法计算与比较大小即可求解.【详解】因为,,所以,所以,故选:A.12、C【解析】设双曲线方程为,,由已知可得,并求得双曲线上一点的坐标,把点的坐标代入双曲线方程,求解,即可得到双曲线的虚轴长【详解】设点是双曲线与截面的一个交点,设双曲线的方程为:,花瓶的最小直径,则,由瓶口直径为,瓶高为,可得,故,解得,该双曲线的虚轴长为故选:二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析得都在以为焦点的椭球上,再利用椭球的性质得到,化简即得解.【详解】解:因为,所以都在以为焦点椭球上,由椭球的性质得,是垂直椭球焦点所在直线的弦,的最大值为,此时共面且过中点,即故实数的取值范围为.故答案为:14、【解析】设一组基地向量,将目标用基地向量表示,然后根据向量的运算法则运算即可【详解】设,则有:则有:根据,解得:故答案为:15、【解析】根据两条直线相互垂直的条件列方程,解方程求得m的值.【详解】由于两条直线垂直,故,解得.故答案为:.16、【解析】根据题意可得,利用推出,进而得出结果.【详解】由题意知,,将代入方程中,得,因为,所以,整理,得,又,所以,由,解得.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、选择见解析;(1);(2)【解析】(1)选条件①.利用正弦定理边角互化,结合两角和的正弦公式可得,从而可得答案;选条件②.边角互化、切化弦,结合两角和的正弦公式可得,从而得答案;选条件③.边角互化,利用余弦定理可得,从而可得答案;(2)由三角形面积公式可得得,再利用余弦定理与基本不等式可得答案.【详解】(1)方案一:选条件①由可得,由正弦定理得,因为,所以,所以,故,又,于是,即,因为,所以方案二:选条件②因为,所以由正弦定理及同角三角函数的基本关系式,得,即,因为,所以,又,所以,因为,所以方案三:选条件③∵,∴,即,∴,∴又,所以(2)由题意知,得由余弦定理得,当且仅当且,即,时取等号,所以的最小值为18、(1)14海里小时;(2).【解析】(1)由题意知,,,.在△中,利用余弦定理求出,进而求出渔船甲的速度.(2)在△中,,,,,由正弦定理,即可解出的值.【小问1详解】(1)依题意,,,,.在△中,由余弦定理,得.解得.故渔船甲的速度为海里小时.即渔船甲的速度为14海里小时.【小问2详解】在△中,因为,,,,由正弦定理,得,即.值为.19、(1)(2)【解析】(1)根据递推关系结合等比数列的定义可求解;(2)根据(1)化简,利用裂项相消法求出数列的前n项和.小问1详解】当时,,所以,即,当时,,得,则所以数列是首项为﹣1,公比为3的等比数列所以【小问2详解】由(1)得:所以,所以20、(1)见解析(2)见解析【解析】(1)由导数得出在上的单调性;(2)设和之间的隔离直线为y=kx+b,由题设条件得出对任意恒成立,再由二次函数的性质求解即可.【小问1详解】,当时,在上单调递增在内单调递增【小问2详解】设和之间的隔离直线为y=kx+b则对任意恒成立,即对任意恒成立由对任意恒成立,得当时,则有符合题意;当时,则有对任意恒成立的对称轴为又的对称轴为即故和之间存在“隔离直线”,且b的最小值为-4.【点睛】关键点睛:在解决问题一时,求了一阶导得不了函数的单调性,再次求导得,进而得出在恒成立,得在上的单调性.21、(1),;(2)2.【解析】(1)利用三角恒等变换公式化简函数,再利用三角函数性质计算作答.(2)由(1)的结论及已知求出角C,再利用余弦定理计算判断作答.【小问1详解】依题意,,则的最小正周期,由,解得,则在上单调递增,所以的最小正周期为,递增区间为.【小问2详解】由(1)知,,即,在中,,,则,即,,于是得,解得,在中,由余弦定理得:,即,解得或,当时,,为直角三角形,与是钝角三角形矛盾,当时,,,此时,是钝角三角形,则,所以a的值是2.22、(1)极小值为,无极大值(2)【解析】(1)利用导数求出,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论