版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十七章一元二次方程(5大知识归纳)知识点一:一元二次方程的概念1.理解并掌握一元二次方程的意义未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式;2.正确识别一元二次方程中的各项及各项的系数(1)明确只有当二次项系数时,整式方程才是一元二次方程。(2)各项的确定(包括各项的系数及各项的未知数).(3)熟练整理方程的过程一元二次方程的解的定义与检验一元二次方程的解列出实际问题的一元二次方程知识点二:一元二次方程的解法1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;3.体会不同解法的相互的联系;4.值得注意的几个问题:(1)开平方法:对于形如或的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用开平方法求解.形如的方程的解法:当时,;当时,;当时,方程无实数根。(2)配方法:通过配方的方法把一元二次方程转化为的方程,再运用开平方法求解。配方法的一般步骤:①移项:把一元二次方程中含有未知数的项移到方程的左边,常数项移到方程的右边;②“系数化1”:根据等式的性质把二次项的系数化为1;③配方:将方程两边分别加上一次项系数一半的平方,把方程变形为的形式;④求解:若时,方程的解为,若时,方程无实数解。(3)公式法:一元二次方程的根当时,方程有两个实数根,且这两个实数根不相等;当时,方程有两个实数根,且这两个实数根相等,写为;当时,方程无实数根.公式法的一般步骤:①把一元二次方程化为一般式;②确定的值;③代入中计算其值,判断方程是否有实数根;④若代入求根公式求值,否则,原方程无实数根。(因为这样可以减少计算量。另外,求根公式对于任何一个一元二次方程都适用,其中也包括不完全的一元二次方程。)(4)因式分解法:①因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个为0,即:若,则;②因式分解法的一般步骤:若方程的右边不是零,则先移项,使方程的右边为零;把方程的左边分解因式;令每一个因式都为零,得到两个一元一次方程;解出这两个一元一次方程的解可得到原方程的两个解。(5)选用适当方法解一元二次方程①对于无理系数的一元二次方程,可选用因式分解法,较之别的方法可能要简便的多,只不过应注意二次根式的化简问题。②方程若含有未知数的因式,选用因式分解较简便,若整理为一般式再解就较为麻烦。(6)解含有字母系数的方程(1)含有字母系数的方程,注意讨论含未知数最高项系数,以确定方程的类型;(2)对于字母系数的一元二次方程一般用因式分解法解,不能用因式分解的可选用别的方法,此时一定不要忘记对字母的取值进行讨论。知识点三:根的判别式的应用了解一元二次方程根的判别式概念,能用判别式判定根的情况,并会用判别式求一元二次方程中符合题意的参数取值范围。(1)=(2)根的判别式定理及其逆定理:对于一元二次方程()①当方程有实数根;(当方程有两个不相等的实数根;当方程有两个相等的实数根;)②当方程无实数根;从左到右为根的判别式定理;从右到左为根的判别式逆定理。2.常见的问题类型(1)利用根的判别式定理,不解方程,判别一元二次方程根的情况(2)已知方程中根的情况,如何由根的判别式的逆定理确定参数的取值范围(3)应用判别式,证明一元二次方程根的情况①先计算出判别式(关键步骤);②用配方法将判别式恒等变形;③判断判别式的符号;④总结出结论.(4)分类讨论思想的应用:如果方程给出的时未指明是二次方程,后面也未指明两个根,那一定要对方程进行分类讨论,如果二次系数为0,方程有可能是一元一次方程;如果二次项系数不为0,一元二次方程可能会有两个实数根或无实数根。(5)一元二次方程根的判别式常结合三角形、四边形、不等式(组)等知识综合命题,解答时要在全面分析的前提下,注意合理运用代数式的变形技巧(6)一元二次方程根的判别式与整数解的综合(7)判别一次函数与反比例函数图象的交点问题知识点四:根与系数的关系如果一元二次方程()的两根为那么,就有比较等式两边对应项的系数,得①式与②式也可以运用求根公式得到.人们把公式①与②称之为韦达定理,即根与系数的关系.因此,给定一元二次方程就一定有①与②式成立.反过来,如果有两数满足①与②,那么这两数必是一个一元二次方程的根.利用这一基本知识常可以简捷地处理问题.利用根与系数的关系,我们可以不求方程的根,而知其根的正、负性.在的条件下,我们有如下结论:当时,方程的两根必一正一负.若,则此方程的正根不小于负根的绝对值;若,则此方程的正根小于负根的绝对值.当时,方程的两根同正或同负.若,则此方程的两根均为正根;若,则此方程的两根均为负根.⑴韦达定理(根与系数的关系):如果的两根是,,则,.(隐含的条件:)⑵若,是的两根(其中),且为实数,当时,一般地:①,②且,③且,特殊地:当时,上述就转化为有两异根、两正根、两负根的条件.⑶以两个数为根的一元二次方程(二次项系数为1)是:.⑷其他:①若有理系数一元二次方程有一根,则必有一根(,为有理数).②若,则方程必有实数根.③若,方程不一定有实数根.④若,则必有一根.⑤若,则必有一根.⑸韦达定理(根与系数的关系)主要应用于以下几个方面:①已知方程的一个根,求另一个根以及确定方程参数的值;②已知方程,求关于方程的两根的代数式的值;③已知方程的两根,求作方程;④结合根的判别式,讨论根的符号特征;⑤逆用构造一元二次方程辅助解题:当已知等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理;⑤利用韦达定理求出一元二次方程中待定系数后,一定要验证方程的.一些考试中,往往利用这一点设置陷阱.知识点五:一元二次方程的应用列一元二次方程解应用题的一般步骤为:审、设、列、解、检、答。具体可分为:①审题,找等量关系,这是列方程解应用题的关键;②设未知数,注意单位;③根据题意找等量关系列出方程;④解方程;⑤检验解是否合理;⑥写出答案作答考点1数字问题数字问题有以下几种常见类型:(1)连续整数.若三个连续整数最中间的整数是,则最小的整数是,最大的整数是.(2)连续偶数.若三个连续偶数最中间的偶数是,则最小的偶数是,最大的偶数是.(3)连续奇数.若三个连续奇数最中间的奇数是,则最小的奇数是,最大的奇数是.(4)两位数.若一个两位数的十位数字是,个位数字是,则这个两位数是.(5)三位数.若一个三位数的百位数字是,十位数字是,个位数字是,则这个三位数是.考点2多边形对角线问题利用一元二次方程解多边形对角线问题时需要用到公式,其中是多边形的边数,是多边形对角线的总条数.考点3循环问题双方参与问题有以下几种常见类型:(1)握手(单循环).若两个人握1次手,则个人握次手.(2)互送贺卡(双循环).若两个人互送1张贺卡,则个人互送张贺卡.(3)球赛.①若两个队只比赛1场(单循环),则个队比赛场;②若两个队相互比赛1场(双循环),则个队比赛场.考点4传播问题1、病毒传染问题:设每轮传染中平均一个人传染了个人.开始有一人患了流感,第一轮的传染源就是这个人,他传染了个人,用代数式表示第一轮后共有人患了流感.第二轮传染中,人中的每个人又传染了个人,用代数式表示第二轮后共有1×(1+x)+x(1+x)=(1+x)²人患了流感.树枝问题:设一个主干长x个枝干,每个枝干长x个小分支,则一共有1+x+x²个枝。考点5增减率问题增减率问题涉及的公式有:(1)(2)若设原来量是,平均增长率是,增长次数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中国能建葛洲坝文旅公司副总经理岗位公开招聘【2名】高频重点提升(共500题)附带答案详解
- 2025中国移动(成都)产业研究院社会招聘高频重点提升(共500题)附带答案详解
- 2025中国电信湖北随州分公司招聘7人高频重点提升(共500题)附带答案详解
- 2025中国电信吉林延边分公司校园招聘高频重点提升(共500题)附带答案详解
- 2025中共无锡市梁溪区委办公室(档案史志馆)公开招聘编外人员2人(江苏)高频重点提升(共500题)附带答案详解
- 2025下半年贵州六盘水市事业单位及国企业招聘应征入伍大学毕业生164人高频重点提升(共500题)附带答案详解
- 2025下半年湖北孝感市孝南区部分事业单位招聘79人高频重点提升(共500题)附带答案详解
- 2025下半年江苏南京市江北新区社会事业局招聘编外人员29人历年高频重点提升(共500题)附带答案详解
- 2025下半年四川绵阳事业单位历年高频重点提升(共500题)附带答案详解
- 2025下半年四川南充西充县事业单位招聘50人高频重点提升(共500题)附带答案详解
- 公路工程定额应用-公路工程定额的组成
- 保险行业风控规则与制度培训
- 2022-2023学年佛山市禅城区六年级数学第一学期期末达标测试试题含解析
- 《广联达培训教程》课件
- 扬州育才小学2023-2024六年级数学上册期末复习试卷(一)及答案
- 函数的单调性说课课件-2023-2024学年高一上学期数学人教A版(2019)必修第一册
- 浙江省温州市2022-2023学年五年级上学期语文期末试卷(含答案)3
- 软件系统实施与质量保障方案
- UV激光切割机市场需求分析报告
- 装修工程竣工验收报告模板模板
- 篮球馆受伤免责协议
评论
0/150
提交评论