2023-2024学年上海市闵行区七宝中学高三第二次综合考试试题_第1页
2023-2024学年上海市闵行区七宝中学高三第二次综合考试试题_第2页
2023-2024学年上海市闵行区七宝中学高三第二次综合考试试题_第3页
2023-2024学年上海市闵行区七宝中学高三第二次综合考试试题_第4页
2023-2024学年上海市闵行区七宝中学高三第二次综合考试试题_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年上海市闵行区七宝中学高三第二次综合考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的二项展开式中,的系数是()A.70 B.-70 C.28 D.-282.设命题:,,则为A., B.,C., D.,3.ΔABC中,如果lgcosA=lgsinA.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形4.若复数满足,则()A. B. C. D.5.羽毛球混合双打比赛每队由一男一女两名运动员组成.某班级从名男生,,和名女生,,中各随机选出两名,把选出的人随机分成两队进行羽毛球混合双打比赛,则和两人组成一队参加比赛的概率为()A. B. C. D.6.下图是我国第24~30届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是().金牌(块)银牌(块)铜牌(块)奖牌总数2451112282516221254261622125027281615592832171463295121281003038272388A.中国代表团的奥运奖牌总数一直保持上升趋势B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C.第30届与第29届北京奥运会相比,奥运金牌数、银牌数、铜牌数都有所下降D.统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.57.执行如图所示的程序框图,输出的结果为()A. B. C. D.8.集合,则()A. B. C. D.9.已知函数,若,则a的取值范围为()A. B. C. D.10.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为()A. B. C. D.11.在边长为2的菱形中,,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为()A. B. C. D.12.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表:黄赤交角正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是()A.公元前2000年到公元元年 B.公元前4000年到公元前2000年C.公元前6000年到公元前4000年 D.早于公元前6000年二、填空题:本题共4小题,每小题5分,共20分。13.如图,在复平面内,复数,对应的向量分别是,,则_______.14.已知双曲线的渐近线与准线的一个交点坐标为,则双曲线的焦距为______.15.我国古代数学名著《九章算术》对立体几何有深入的研究,从其中一些数学用语可见,譬如“憋臑”意指四个面都是直角三角形的三棱锥.某“憋臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知几何体高为,则该几何体外接球的表面积为__________.16.设为抛物线的焦点,为上互相不重合的三点,且、、成等差数列,若线段的垂直平分线与轴交于,则的坐标为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥V﹣ABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO⊥平面ABCD,E是棱VC的中点.(1)求证:VA∥平面BDE;(2)求证:平面VAC⊥平面BDE.18.(12分)已知都是各项不为零的数列,且满足其中是数列的前项和,是公差为的等差数列.(1)若数列是常数列,,,求数列的通项公式;(2)若是不为零的常数),求证:数列是等差数列;(3)若(为常数,),.求证:对任意的恒成立.19.(12分)已知函数的定义域为,且满足,当时,有,且.(1)求不等式的解集;(2)对任意,恒成立,求实数的取值范围.20.(12分)已知数列满足:,,且对任意的都有,(Ⅰ)证明:对任意,都有;(Ⅱ)证明:对任意,都有;(Ⅲ)证明:.21.(12分)如图,在四棱锥中,平面,,为的中点.(1)求证:平面;(2)求二面角的余弦值.22.(10分)如图,在直三棱柱中,,点P,Q分别为,的中点.求证:(1)PQ平面;(2)平面.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A.考点:二项式定理的应用.2.D【解析】

直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题:,,则为:,.故本题答案为D.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.3.B【解析】

化简得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,结合0<A<π,可求A=π【详解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故选:B【点睛】本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题.4.B【解析】

由题意得,,求解即可.【详解】因为,所以.故选:B.【点睛】本题考查复数的四则运算,考查运算求解能力,属于基础题.5.B【解析】

根据组合知识,计算出选出的人分成两队混合双打的总数为,然后计算和分在一组的数目为,最后简单计算,可得结果.【详解】由题可知:分别从3名男生、3名女生中选2人:将选中2名女生平均分为两组:将选中2名男生平均分为两组:则选出的人分成两队混合双打的总数为:和分在一组的数目为所以所求的概率为故选:B【点睛】本题考查排列组合的综合应用,对平均分组的问题要掌握公式,比如:平均分成组,则要除以,即,审清题意,细心计算,考验分析能力,属中档题.6.B【解析】

根据表格和折线统计图逐一判断即可.【详解】A.中国代表团的奥运奖牌总数不是一直保持上升趋势,29届最多,错误;B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不表示某种意思,正确;C.30届与第29届北京奥运会相比,奥运金牌数、铜牌数有所下降,银牌数有所上升,错误;D.统计图中前六届奥运会中国代表团的奥运奖牌总数按照顺序排列的中位数为,不正确;故选:B【点睛】此题考查统计图,关键点读懂折线图,属于简单题目.7.D【解析】

由程序框图确定程序功能后可得出结论.【详解】执行该程序可得.故选:D.【点睛】本题考查程序框图.解题可模拟程序运行,观察变量值的变化,然后可得结论,也可以由程序框图确定程序功能,然后求解.8.D【解析】

利用交集的定义直接计算即可.【详解】,故,故选:D.【点睛】本题考查集合的交运算,注意常见集合的符号表示,本题属于基础题.9.C【解析】

求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式.【详解】由得,在时,是增函数,是增函数,是增函数,∴是增函数,∴由得,解得.故选:C.【点睛】本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解.10.C【解析】

根据三视图还原为几何体,结合组合体的结构特征求解表面积.【详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积,故选C.【点睛】本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.11.D【解析】

取AC中点N,由题意得即为二面角的平面角,过点B作于O,易得点O为的中心,则三棱锥的外接球球心在直线BO上,设球心为,半径为,列出方程即可得解.【详解】如图,由题意易知与均为正三角形,取AC中点N,连接BN,DN,则,,即为二面角的平面角,过点B作于O,则平面ACD,由,可得,,,即点O为的中心,三棱锥的外接球球心在直线BO上,设球心为,半径为,,,解得,三棱锥的外接球的表面积为.故选:D.【点睛】本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题.12.D【解析】

先理解题意,然后根据题意建立平面几何图形,在利用三角函数的知识计算出冬至日光与春秋分日光的夹角,即黄赤交角,即可得到正确选项.【详解】解:由题意,可设冬至日光与垂直线夹角为,春秋分日光与垂直线夹角为,则即为冬至日光与春秋分日光的夹角,即黄赤交角,将图3近似画出如下平面几何图形:则,,.,估计该骨笛的大致年代早于公元前6000年.故选:.【点睛】本题考查利用三角函数解决实际问题的能力,运用了两角和与差的正切公式,考查了转化思想,数学建模思想,以及数学运算能力,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】试题分析:由坐标系可知考点:复数运算14.1【解析】

由双曲线的渐近线,以及求得的值即可得答案.【详解】由于双曲线的渐近线与准线的一个交点坐标为,所以,即①,把代入,得,即②又③联立①②③,得.所以.故答案是:1.【点睛】本题考查双曲线的性质,注意题目“双曲线的渐近线与准线的一个交点坐标为”这一条件的运用,另外注意题目中要求的焦距即,容易只计算到,就得到结论.15.【解析】三视图还原如下图:,由于每个面是直角,显然外接球球心O在AC的中点.所以,,填。【点睛】三视图还原,当出现三个尖点在一个位置时,我们常用“揪尖法”。外接球球心到各个顶点的距离相等,而直角三角形斜边上的中点到各顶点的距离相等,所以本题的球心为AC中点。16.或【解析】

设出三点的坐标,结合等差数列的性质、线段垂直平分线的性质、抛物线的定义进行求解即可.【详解】抛物线的准线方程为:,设,由抛物线的定义可知:,,,因为、、成等差数列,所以有,所以,因为线段的垂直平分线与轴交于,所以,因此有,化简整理得:或.若,由可知;,这与已知矛盾,故舍去;若,所以有,因此.故答案为:或【点睛】本题考查了抛物线的定义的应用,考查了等差数列的性质,考查了数学运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)见解析【解析】

(1)连结OE,证明VA∥OE得到答案.(2)证明VO⊥BD,BD⊥AC,得到BD⊥平面VAC,得到证明.【详解】(1)连结OE.因为底面ABCD是菱形,所以O为AC的中点,又因为E是棱VC的中点,所以VA∥OE,又因为OE⊂平面BDE,VA⊄平面BDE,所以VA∥平面BDE;(2)因为VO⊥平面ABCD,又BD⊂平面ABCD,所以VO⊥BD,因为底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC⊂平面VAC,所以BD⊥平面VAC.又因为BD⊂平面BDE,所以平面VAC⊥平面BDE.【点睛】本题考查了线面平行,面面垂直,意在考查学生的推断能力和空间想象能力.18.(1);(2)详见解析;(3)详见解析.【解析】

(1)根据,可求得,再根据是常数列代入根据通项与前项和的关系求解即可.(2)取,并结合通项与前项和的关系可求得再根据化简可得,代入化简即可知,再证明也成立即可.(3)由(2)当时,,代入所给的条件化简可得,进而证明可得,即数列是等比数列.继而求得,再根据作商法证明即可.【详解】解:.是各项不为零的常数列,则,则由,及得,当时,,两式作差,可得.当时,满足上式,则;证明:,当时,,两式相减得:即.即.又,,即.当时,,两式相减得:.数列从第二项起是公差为的等差数列.又当时,由得,当时,由,得.故数列是公差为的等差数列;证明:由,当时,,即,,,即,即,当时,即.故从第二项起数列是等比数列,当时,..另外,由已知条件可得,又,,因而.令,则.故对任意的恒成立.【点睛】本题主要考查了等差等比数列的综合运用,需要熟练运用通项与前项和的关系分析数列的递推公式继而求解通项公式或证明等差数列等.同时也考查了数列中的不等式证明等,需要根据题意分析数列为等比数列并求出通项,再利用作商法证明.属于难题.19.(1);(2).【解析】

(1)利用定义法求出函数在上单调递增,由和,求出,求出,运用单调性求出不等式的解集;(2)由于恒成立,由(1)得出在上单调递增,恒成立,设,利用三角恒等变换化简,结合恒成立的条件,构造新函数,利用单调性和最值,求出实数的取值范围.【详解】(1)设,,所以函数在上单调递增,又因为和,则,所以得解得,即,故的取值范围为;(2)由于恒成立,恒成立,设,则,令,则,所以在区间上单调递增,所以,根据条件,只要,所以.【点睛】本题考查利用定义法求函数的单调性和利用单调性求不等式的解集,考查不等式恒成立问题,还运用降幂公式、两角和与差的余弦公式、辅助角公式,考查转化思想和解题能力.20.(1)见解析(2)见解析(3)见解析【解析】分析:(1)用反证法证明,注意应用题中所给的条件,有效利用,再者就是注意应用反证法证题的步骤;(2)将式子进行相应的代换,结合不等式的性质证得结果;(3)结合题中的条件,应用反证法求得结果.详解:证明:(Ⅰ)证明:采用反证法,若不成立,则若,则,与任意的都有矛盾;若,则有,则与任意的都有矛盾;故对任意,都有成立;(Ⅱ)由得,则,由(Ⅰ)知,,即对任意,都有;.(Ⅲ)由(Ⅱ)得:,由(Ⅰ)知,,∴,∴,即,若,则,取时,有,与矛盾.则.得证.点睛:该题考查的是有关命题的证明问题,在证题的过程中,注意对题中的条件的等价转化,注意对式子的等价变形,以及证题的思路,要掌握证明问题的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论