2.2-2.3轴对称的性质(二)与设计轴对称图案(原卷版)_第1页
2.2-2.3轴对称的性质(二)与设计轴对称图案(原卷版)_第2页
2.2-2.3轴对称的性质(二)与设计轴对称图案(原卷版)_第3页
2.2-2.3轴对称的性质(二)与设计轴对称图案(原卷版)_第4页
2.2-2.3轴对称的性质(二)与设计轴对称图案(原卷版)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2-2.3轴对称的性质(2)与设计轴对称图案【推本溯源】1.轴对称的性质(二)试一试:在网格中画出图形的另一半。2.点A在直线外,按下列方法画点A关于直线l的对称点。画法:1.画AO⊥l,垂足为O;2.在AO的延长线上截取OA′,使OA′=AO;点A′就是点A关于直线l对称的点。3.(1)在下图用三角尺画线段AB关于直线l对称的线段A′B′;(2)在下图用三角尺画▲ABC关于直线l对称的▲A′B′C′。 因此,画一个图形关于一条直线对称的图形,关键是确定某些点关于这条线的。右边两个三角形关于直线MN对称,取AC中点为点P,连接BP,BP为AC上的中线;可以在右边把BP的对称图形画出来吗?因此,成轴对称的两个图形的任何对应部分也设计轴对称图案如图,由小正方形组成的网格中,请分别在三个网格中涂黑两个方格,使整个网络中的黑色方格构成的图案为轴对称图形.

【解惑】例1:下面的图形中对称轴最多的是(

)A. B. C. D.例2:如图正方形网格中的每一个小正方形边长都是1.(1)画出下面图形的另一半,使得它们是轴对称图形.(2)求图中这棵树的面积.例3:画出四边形关于直线的轴对称的图形.例4:(1)观察图①~图③中阴影部分的图形,写出这3个图形具有的两个共同特征;(2)在图④和⑤中,各设计一个与前面不同的图形,使它们也具有(1)中的两个共同特征.例5:如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的顶点都是格点,仅用无刻度直尺在给定的网格中画图(保留画图痕迹).(1)在图1中,为格点,在上画点,使;(2)在图2中,画的中线;(3)在图3中,画的高;(4)在图4中,画线段上的点,使.【摩拳擦掌】1.(2023春·全国·七年级专题练习)如图,这是由三个全等的小正方形拼接成的图形,若只平移其中一个小正方形,与其他两个小正方形重新拼接无覆盖,有公共顶点,可以拼接成不全等的轴对称图形的方法有(

)A.种 B.种 C.种 D.种2.(2022秋·七年级单元测试)如图,在的正方形网格中,有个小正方形已经涂黑,再涂黑任意个白色的小正方形,使新构成的黑色图形是轴对称图形,这样的涂法有_____种.3.(2023秋·八年级课时练习)如图是由三个相同的小正方形组成的图形,请你用四种不同的方法在图中补画一个相同的小正方形,使补画后的四个小正方形组成的图形是轴对称图形.

4.(2022春·七年级单元测试)图形设计:请将网格中的某些小方格涂黑,使它与已涂黑的小方格组成轴对称图形,并且有两条对称轴.(要求用两种不同的方法)

5.(2023秋·河北沧州·八年级统考期末)如图1,网格中的每一个小正方形的边长为1,为格点三角形(点、、在小正方形的格点上),直线为格点直线(直线经过小正方形的格点).(1)如图1,作出关于直线的轴对称图形;(2)如图2,在直线上找到一点,使的值最小;(3)如图3,仅用直尺将网格中的格点三角形的面积三等分,并将其中的一份用铅笔涂成阴影.6.(2022秋·江苏盐城·八年级校联考阶段练习)用三角尺画关于直线对称的三角形.【知不足】1.(2022秋·江苏泰州·八年级校考期中)如图,是正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有______种选择.

2.(2023春·七年级单元测试)如图,在的正方形网格中已将图中的四个小正方形涂上阴影,如果再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是_____.3.(2022秋·吉林延边·八年级统考期末)如图是小正三角形组成的网格,每个网格里已经有3个涂上了阴影的小正三角形.在每个网格里,再将两个小正三角形涂上阴影,使得整个阴影部分构成轴对称图形.(每个网格里的阴影部分的图形不能相同)4.(2023春·全国·七年级专题练习)在如图所示的正方形网格中,已有两个正方形涂黑,请再将其中的一个空白正方形涂黑,使整个图形是一个轴对称图形.(要求:①画出4种不同的补充完整的轴对称图形;②画出补充完整轴对称图形的一条对称轴;③每个图形所画对称轴是不同的直线)5.(2022秋·七年级单元测试)指出下列图形中的轴对称图形,是轴对称图形的指出对称轴.

6.(2022秋·全国·八年级专题练习)图中两个五边形成轴对称吗?如果是,请你标出A,B,C三点的对称点,并想办法画出对称轴.7.(2022秋·八年级课时练习)下列图形是轴对称图形吗?你是怎样判别的?对于各轴对称图形,你能找出对称轴吗?有哪些方法?8.(2022秋·八年级课时练习)作出下列轴对称图形的所有对称轴.(1)(2)(3)【一览众山小】1.(2023春·七年级单元测试)如图,16个相同的小正方形拼成一个正方形网格,其中的三个小方格已涂黑,请你用四种方法在图中再涂黑一个小方格,使它成为轴对称图形.2.(2023秋·江西南昌·八年级统考期末)如图是由一个正方形和一个等腰直角三角形组成的图形,请用无刻度的直尺,按下列要求作图(不写作答,但要保留作图的痕迹).(1)在图1中,作一个小正方形;(2)在图2中,作图形的对称轴.3.(2022·辽宁葫芦岛·八年级校考期中)如图,网格中的与为轴对称图形.(1)利用网格线作出与的对称轴l;(2)如果每一个小正方形的边长为1,请直接写出的面积为______.(3)顶点在格点,找出为一边且与全等(不与重合)的三角形,这样的三角形在网格内共能画出______个.(4)在对称轴l上找到一点P,使最短.4.(2023春·全国·七年级专题练习)请画出下列轴对称图形的所有对称轴.5.(2022秋·江西赣州·八年级统考期中)(1)如图1,四边形与四边形关于直线l对称.连接、.设它们相交于点P.请作出点P关于直线l对称的对称点Q.(2)如图2,已知五边形和关于直线m对称,请用无刻度的直尺画出直线m.6.(2023春·全国·七年级专题练习)找出下列图形的所有的对称轴,并一一画出来.7.(2022秋·江苏南京·八年级统考期中)已知图①、图②都是轴对称图形.仅用无刻度直尺,按要求完成下列作图(保留作图痕迹,不写作法):(1)在图①中,作出该图形的对称轴l;(2)在图②中,作出点P的对称点.8.(2023春·全国·七年级专题练习)与关于直线成轴对称,如图所示:(1)请用无刻度的直尺,在图1中作出对称轴所在直线.(2)类比图1的思维方式,请用无刻度的直尺,在图2中作出对称轴所在直线.9.(2023春·全国·七年级专题练习)只用无刻度的直尺作图:在图①中画出正五边形ABCDE中∠A的角平分线、图②的网格中作出已知角的角平分线(保留作图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论