广西大学附属中学2025届高二上数学期末统考模拟试题含解析_第1页
广西大学附属中学2025届高二上数学期末统考模拟试题含解析_第2页
广西大学附属中学2025届高二上数学期末统考模拟试题含解析_第3页
广西大学附属中学2025届高二上数学期末统考模拟试题含解析_第4页
广西大学附属中学2025届高二上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西大学附属中学2025届高二上数学期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某公司有1000名员工,其中:高层管理人员为50名,属于高收入者;中层管理人员为150名,属于中等收入者;一般员工为800名,属于低收入者.要对这个公司员工的收入情况进行调查,欲抽取100名员工,应当抽取的一般员工人数为()A.100 B.15C.80 D.502.已知等差数列的前项和为,,,当取最大时的值为()A. B.C. D.3.已知数列是首项为,公差为1的等差数列,数列满足.若对任意的,都有成立,则实数的取值范围是()A., B.C., D.4.已知函数满足,则曲线在点处的切线方程为()A. B.C. D.5.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,n的最大值是()A.8 B.9C.10 D.116.如图,在棱长为1的正方体中,点B到直线的距离为()A. B.C. D.7.在三棱锥中,,,,若,,则()A. B.C. D.8.函数的单调增区间为()A. B.C. D.9.设AB是椭圆()的长轴,若把AB一百等分,过每个分点作AB的垂线,交椭圆的上半部分于P1、P2、…、P99,F1为椭圆的左焦点,则的值是()A. B.C. D.10.已知等比数列的公比q为整数,且,,则()A.2 B.3C.-2 D.-311.已知,则a,b,c的大小关系为()A. B.C. D.12.已知函数为偶函数,则在处的切线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是双曲线的左焦点,圆与双曲线在第一象限的交点,若的中点在双曲线的渐近线上,则此双曲线的离心率是___________.14.已知为等比数列的前n项和,若,,则_____________.15.如图所示,在直二面角D-AB-E中,四边形ABCD是边长为2的正方形,△AEB是等腰直角三角形,其中,则点D到平面ACE的距离为________16.已知点,,,则外接圆的圆心坐标为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知椭圆的焦点是圆与x轴的交点,椭圆C的长半轴长等于圆O的直径(1)求椭圆C的方程;(2)F为椭圆C的右焦点,A为椭圆C的右顶点,点B在线段FA上,直线BD,BE与椭圆C的一个交点分别是D,E,直线BD与直线BE的倾斜角互补,直线BD与圆O相切,设直线BD的斜率为.当时,求k18.(12分)已知椭圆的离心率为,右焦点为F,且E上一点P到F的最大距离3(1)求椭圆E的方程;(2)若A,B为椭圆E上的两点,线段AB过点F,且其垂直平分线交x轴于H点,,求19.(12分)如图,在三棱锥中,平面,,,为的中点.(1)证明:平面;(2)求平面与平面所成二面角的正弦值.20.(12分)已知的三个内角,,的对边分别为,,,且满足.(1)求角的大小;(2)若,,,求的长.21.(12分)某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东西两部各5个城市,得到观看该节目的人数(单位:千人)如下茎叶图所示:其中一个数字被污损.(1)求东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数的概率.(2)随着节目的播出,极大激发了观众对成语知识的学习积累的热情,从中获益匪浅.现从观看该节目的观众中随机统计了4位观众的周均学习成语知识的时间(单位:小时)与年龄(单位:岁),并制作了对照表(如下表所示)年龄(岁)20304050周均学习成语知识时间(小时)2.5344.5由表中数据,试求线性回归方程,并预测年龄为55岁观众周均学习成语知识时间.参考公式:,.22.(10分)已知复数,其中i是虚数单位,m为实数(1)当复数z为纯虚数时,求m的值;(2)当复数在复平面内对应的点位于第三象限时,求m的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】按照比例关系,分层抽取.【详解】由题意可知,所以应当抽取的一般员工人数为.故选:C2、B【解析】由已知条件及等差数列通项公式、前n项和公式求基本量,再根据等差数列前n项和的函数性质判断取最大时的值.【详解】令公差为,则,解得,所以,当时,取最大值.故选:B3、D【解析】由等差数列通项公式得,再结合题意得数列单调递增,且满足,,即,再解不等式即可得答案.【详解】解:根据题意:数列是首项为,公差为1的等差数列,所以,由于数列满足,所以对任意的都成立,故数列单调递增,且满足,,所以,解得故选:4、A【解析】求出函数的导数,利用导数的定义求解,然后求解切线的斜率即可【详解】解:函数,可得,,可得,即,所以,可得,解得,所以,所以曲线在点处的切线方程为故选:A5、B【解析】先求出数列和的通项公式,然后利用分组求和求出,再对进行赋值即可求解.【详解】解:因为数列是以1为首项,2为公差的等差数列所以因为是以1为首项,2为公比的等比数列所以由得:当时,即当时,当时,所以n的最大值是.故选:B.【点睛】关键点睛:本题的关键是利用分组求和求出,再通过赋值法即可求出使不等式成立的的最大值.6、A【解析】以为坐标原点,以为单位正交基底,建立空间直角坐标系,取,,利用向量法,根据公式即可求出答案.【详解】以为坐标原点,以为单位正交基底,建立如图所示的空间直角坐标系,则,,取,,则,,则点B到直线AC1的距离为.故选:A7、B【解析】根据空间向量的基本定理及向量的运算法则计算即可得出结果.【详解】连接,因为,所以,因为,所以,所以,故选:B8、D【解析】先求定义域,再求导数,令解不等式,即可.【详解】函数的定义域为令,解得故选:D【点睛】本题考查利用导数研究函数的单调性,属于中档题.9、D【解析】根据椭圆的定义,写出,可求出的和,又根据关于纵轴成对称分布,得到结果详解】设椭圆右焦点为F2,由椭圆的定义知,2,,,由题意知,,,关于轴成对称分布,又,故所求的值为故选:D10、A【解析】由等比数列的性质有,结合已知求出基本量,再由即可得答案.【详解】因为,,且q为整数,所以,,即q=2.所以.故选:A11、A【解析】根据给定条件构造函数,再探讨其单调性并借助单调性判断作答.【详解】令函数,求导得,当时,,于是得在上单调递减,而,则,即,所以,故选:A12、A【解析】根据函数是偶函数可得,可求出,求出函数在处的导数值即为切线斜率,即可求出切线方程.【详解】函数为偶函数,,即,解得,,则,,且,切线方程为,整理得.故选:A.【点睛】本题考查函数奇偶性的应用,考查利用导数求切线方程,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】计算点渐近线的距离,从而得,由勾股定理计算,由双曲线定义列式,从而计算得,即可计算出离心率.【详解】设双曲线右焦点为,因为的中点在双曲线的渐近线上,由可知,,因为为中点,所以,所以,即垂直平分线段,所以到渐近线的距离为,可得,所以,由双曲线定义可知,,即,所以,所以.故答案为:【点睛】双曲线的离心率是椭圆最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围)14、30【解析】根据等比数列性质得,,也成等比,即可求得结果.【详解】由等比数列的性质可知,,,构成首项为10,公比为1的等比数列,所以【点睛】本题考查等比数列性质,考查基本求解能力,属基础题.15、【解析】建立合适空间直角坐标系,分别表示出点的坐标,然后求解出平面的一个法向量,利用公式求解出点到平面的距离.【详解】以AB的中点O为坐标原点,分别以OE,OB所在的直线为x轴、y轴,过垂直于平面的方向为轴,建立如下图所示的空间直角坐标系,则,,设平面ACE的法向量,则,即,令,∴故点D到平面ACE的距离.故答案:.16、【解析】求得的垂直平分线的方程,在求得垂直平分线的交点,则问题得解.【详解】线段中点坐标为,线段斜率为,所以线段垂直平分线的斜率为,故线段的垂直平分线方程为,即.线段中点坐标为,线段斜率为,所以线段垂直平分线的斜率为,故线段的垂直平分线方程为,即.由.所以外接圆的圆心坐标为.故答案为:.【点睛】本题考查直线方程的求解,直线交点坐标的求解,属综合基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)-1【解析】(1)由题设可得,求出参数b,即可写出椭圆C的方程;(2)延长线段DB交椭圆C于点,根据对称性设B,为,,联立椭圆方程,应用韦达定理并结合已知条件可得,直线与圆相切可得,进而求参数t,即可求直线BD的斜率.【小问1详解】因为圆与x轴的交点分别为,,所以椭圆C的焦点分别为,,∴,根据条件得,∴,故椭圆C的方程为【小问2详解】延长线段DB交椭圆C于点,因直线BD与直线BE的倾斜角互补,根据对称性得由条件可设B的坐标为,设D,的纵坐标分别为,,直线的方程为,由于,即,所以由得:∴,∴①,②,由①得:,代入②得,∴∵直线与圆相切,∴,即∴,解得,又,∴,故,即直线BD斜率【点睛】关键点点睛:将已知线段的长度关系转化为D,的纵坐标的数量关系,设直线的含参方程,联立椭圆方程及其与圆的相切求参数关系,进而求参数即可.18、(1);(2)【解析】(1)根据离心率和最大距离建立等式即可求解;(2)根据弦长,求出直线方程,解出点的坐标即可得解.【详解】(1)椭圆的离心率为,右焦点为F,且E上一点P到F的最大距离3,所以,所以,所以椭圆E的方程;(2)A,B为椭圆E上的两点,线段AB过点F,且其垂直平分线交x轴于H点,所以线段AB所在直线斜率一定存在,所以设该直线方程代入,整理得:,设,,,整理得:,当时,线段中点坐标,中垂线方程:,;当时,线段中点坐标,中垂线方程:,,综上所述:.19、(1)证明见解析(2)【解析】(1)根据勾股定理先证明,然后证明,进而通过线面垂直的判定定理证明问题;(2)建立空间直角坐标系,进而求出两个平面的法向量,然后通过空间向量的夹角公式求得答案.【小问1详解】∵,,∴,∴,∵平面,平面,∴,∵,,,∴平面.【小问2详解】以点为坐标原点,向量,的方向分别为,轴的正方向建立空间直角坐标系,则,,,,,设平面的法向量为,由,,有取,可得平面的一个法向量为.设平面的一个法向量为,由,,有取,可得平面的一个法向量为,所以,故平面与平面的夹角的正弦值为.20、(1);(2).【解析】(1)由正弦定理化边为角后,结合两角和的正弦公式、诱导公式可求得;(2)用表示出,然后平方由数量积的运算求得向量的模(线段长度)【详解】(1)因为,所以由正弦定理可得,即,因为,所以,,∵,故;(2)由,得,所以,所以.21、(1);(2)详见解析.【解析】(1)先根据两个平均值的大小得到的取值范围,再利用古典概型的概率公式进行求解;(2)先利用最小二乘法求出线性回归方程,再利用方程进行预测.试题解析:(1)设被污损的数字为,则的所有可能取值为:0,1,2,3,4,5,6,7,8,9共10种等可能结果,令,解得,则满足“

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论