版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省百校2025届数学高二上期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的焦点到直线的距离为,则()A.1 B.2C. D.42.已知全集,集合,则()A. B.C. D.3.观察下列各式:,,,,,可以得出的一般结论是A.B.C.D.4.已知椭圆的左,右两个焦点分别为,若椭圆C上存在一点A,满足,则椭圆C的离心率的取值范围是()A. B.C. D.5.已知函数,则满足不等式的的取值范围是()A. B.C. D.6.已知函数的部分图象如图所示,且经过点,则()A.关于点对称B.关于直线对称C.为奇函数D.为偶函数7.若数列满足,则数列的通项公式为()A. B.C. D.8.设函数,若为奇函数,则曲线在点处的切线方程为()A. B.C. D.9.若两定点A,B的距离为3,动点M满足,则M点的轨迹围成区域的面积为()A. B.C. D.10.直线分别与曲线,交于,两点,则的最小值为()A. B.1C. D.211.已知双曲线的左右焦点分别为、,过点的直线交双曲线右支于A、B两点,若是等腰三角形,且,则的周长为()A. B.C. D.12.若双曲线经过点,且它的两条渐近线方程是,则双曲线的离心率是()A. B.C. D.10二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,,对一切,恒成立,则实数的取值范围为________.14.已知点,则线段的垂直平分线的一般式方程为__________.15.某人有楼房一栋,室内面积共计,拟分割成两类房间作为旅游客房,大房间每间面积为,可住游客4名,每名游客每天的住宿费100元;小房间每间面积为,可住游客2名,每名游客每天的住宿费150元;装修大房间每间需要3万元,装修小房间每间需要2万元.如果他只能筹款25万元用于装修,且假定游客能住满客房,则该人一天能获得的住宿费的最大值为___________元.16.曲线围成的图形的面积为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆的方程为(1)求圆的圆心及半径;(2)是否存在直线满足:经过点,且_________________?如果存在,求出直线的方程;如果不存在,请说明理由从下列三个条件中任选一个补充在上面问题中并作答:条件①:被圆所截得的弦长最长;条件②:被圆所截得的弦长最短;条件③:被圆所截得的弦长为注:如果选择多个条件分别作答,按第一个解答计分18.(12分)在平面直角坐标系xOy中,已知抛物线()的焦点F到双曲线的渐近线的距离为1.(1)求抛物线C的方程;(2)若不经过原点O的直线l与抛物线C交于A、B两点,且,求证:直线l过定点.19.(12分)已知数列满足,(1)设,求证:数列是等比数列;(2)求数列的前项和20.(12分)设AB是过抛物线焦点F的弦,若,,求证:(1);(2)(为弦AB的倾斜角)21.(12分)已知抛物线的焦点F,C上一点到焦点的距离为5(1)求C方程;(2)过F作直线l,交C于A,B两点,若线段AB中点的纵坐标为-1,求直线l的方程22.(10分)已知椭圆的左、右焦点分别为,,点在椭圆C上,且满足(1)求椭圆C的标准方程;(2)设直线与椭圆C交于不同的两点M,N,且(O为坐标原点).证明:总存在一个确定的圆与直线l相切,并求该圆的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得的值.【详解】抛物线的焦点坐标为,其到直线的距离:,解得:(舍去).故选:B.2、B【解析】根据题意先求出,再利用交集定义即可求解.【详解】全集,集合,则,故故选:B3、C【解析】1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以归纳:左边每一个式子均有2n-1项,且第一项为n,则最后一项为3n-2右边均为2n-1的平方故选C点睛:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想)4、C【解析】根据题意可知当A为椭圆的上下顶点时,即可满足椭圆C上存在一点A,使得,由此可得,解此不等式可得答案.【详解】由椭圆的对称性可知,当A为椭圆的上下顶点时,最大,故只需即可满足题意,设O为坐标原点,则只需,即有,所以,解得,故选:C5、A【解析】利用导数判断函数的单调性,根据单调性即可解不等式【详解】由则函数在上单调递增又,所以,解得故选:A6、D【解析】根据图象求得函数解析式,结合三角函数的图象与性质,逐项判定,即可求解.【详解】由题意,可得,根据图形走势,可得,解得,令,可得,所以,由,所以A不正确;由,可得不是函数的对称轴,所以B不正确;由,此时函数为非奇非偶函数,所以C不正确;由为偶函数,所以D正确.故选:D.7、D【解析】由,分两步,当求出,当时得到,两式作差即可求出数列的通项公式;【详解】解:因为①,当时,,当时②,①②得,所以,当时也成立,所以;故选:D8、C【解析】利用函数的奇偶性求出,求出函数的导数,根据导数的几何意义,利用点斜式即可求出结果【详解】函数的定义域为,若为奇函数,则则,即,所以,所以函数,可得;所以曲线在点处的切线的斜率为,则曲线在点处的切线方程为,即故选:C9、D【解析】以点A为坐标原点,射线AB为x轴的非负半轴建立直角坐标系,求出点M的轨迹方程即可计算得解.【详解】以点A为坐标原点,射线AB为x轴的非负半轴建立直角坐标系,如图,设点,则,化简并整理得:,于是得点M的轨迹是以点为圆心,2为半径的圆,其面积为,所以M点的轨迹围成区域的面积为.故选:D10、B【解析】设,,,,得到,用导数法求解.【详解】解:设,,,,则,,,令,则,函数在上单调递减,在上单调递增,时,函数的最小值为1,故选:B11、A【解析】设,.根据双曲线的定义和等腰三角形可得,再利用余弦定理可求得,从而可得的周长.【详解】由双曲线可得设,.则,,所以,因为是等腰三角形,且,所以,即,所以,所以,,在中,由余弦定理得,即,所以,解得,的周长故选:A【点睛】关键点点睛:根据双曲线的定义求解是解题关键.12、A【解析】由已知设双曲线方程为:,代入求得,计算即可得出离心率.【详解】双曲线经过点,且它的两条渐近线方程是,设双曲线方程为:,代入得:,.所以双曲线方程为:..双曲线C的离心率为故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】通过分离参数,得到关于x的不等式;再构造函数,通过导数求得函数的最值,进而求得a的取值范围【详解】因为,代入解析式可得分离参数a可得令()则,令解得所以当0<x<1,,所以h(x)在(0,1)上单调递减当1<x,,所以h(x)在(1,+∞)上单调递增,所以h(x)在x=1时取得极小值,也即最小值所以h(x)≥h(1)=4因为对一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4所以a的取值范围为【点睛】本题综合考查了函数与导数的应用,分离参数法,利用导数求函数的最值,属于中档题14、【解析】由中点坐标公式和斜率公式可得的中点和直线斜率,由垂直关系可得垂直平分线的斜率,由点斜式可得直线方程,化为一般式即可【详解】由中点坐标公式可得,的中点为,可得直线的斜率为,由垂直关系可得其垂直平分线的斜率为,故可得所求直线的方程为:,化为一般式可得故答案为:15、3600【解析】先设分割大房间为间,小房间为间,收益为元,列出约束条件,再根据约束条件画出可行域,设,再利用的几何意义求最值,只需求出直线过可行域内的整数点时,从而得到值即可【详解】解:设装修大房间间,小房间间,收益为万元,则,目标函数,由,解得画出可行域,得到目标函数过点时,有最大值,故应隔出大房间3间和小房间8间,每天能获得最大的房租收益最大,且为3600元故答案为:360016、##【解析】曲线围成图形关于轴,轴对称,故只需要求出第一象限的面积即可.【详解】将或代入方程,方程不发生改变,故曲线关于轴,轴对称,因此只需求出第一象限的面积即可.当,时,曲线可化为:,表示的图形为一个半圆,围成的面积为,故曲线围成的图形的面积为.故答案:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)圆心为,半径为;(2)答案见解析.【解析】(1)写出圆标准方程即得解;(2)选择条件①:直线应过圆心即直线过点和,即得解;选择条件②:直线应与垂直,求出直线的方程即得解;选择条件③:不存在满足条件的直线.【小问1详解】解:由圆的方程整理可得,所以圆心为,半径为.小问2详解】选择条件①:若直线被圆所截得的弦长最长,则直线应过圆心即直线过点和,所以直线的斜率为,则直线的方程为.选择条件②:若直线过点被圆所截得的弦长最短,则直线应与垂直.又,所以.故直线方程为.选择条件③:经过点的直线被圆所截得的最短弦长,由于,所以不存在满足条件的直线.18、(1)(2)证明见解析【解析】(1)求出双曲线的渐近线方程,由点到直线距离公式可得参数值得抛物线方程;(2)设直线方程为,,直线方程代入抛物线方程后应用韦达定理得,代入可得值,得定点坐标【小问1详解】已知双曲线的一条渐近线方程为,即,抛物线的焦点为,所以,解得(因为),所以抛物线方程为;【小问2详解】由题意设直线方程为,设由得,,,又,所以,所以,直线不过原点,,所以所以直线过定点19、(1)证明见解析;(2).【解析】(1)将变形为,得到为等比数列,(2)由(1)得到的通项公式,用错位相减法求得【详解】(1)由,,可得,因为则,,可得是首项为,公比为的等比数列,(2)由(1),由,可得,,,上面两式相减可得:,则【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和(2)错位相减:用于等差数列与等比数列的积数列的求和(3)分组求和:用于若干个等差或等比数列和或差数列的求和(4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.20、(1)证明见解析(2)证明见解析【解析】(1)设直线的方程为,代入,再利用韦达定理,即可得到结论;(2)由抛物线的定义,结合余弦函数的定义,即可得到的长,同理可得的长,两式相乘即可证明;【小问1详解】证明:由题意设直线的方程为,代入,可得,所以;【小问2详解】证明:如图,不妨设弦AB的倾斜角为锐角,作垂直于抛物线准线,垂足为M,N,由抛物线的定义可得,所以,同理可得,,所以,当为直角或钝角时,同理可证明,故.21、(1);(2).【解析】(1)由抛物线的定义,结合已知有求p,写出抛物线方程.(2)由题意设直线l为,联立抛物线方程,应用韦达定理可得,由中点公式有,进而求k值,写出直线方程.【详解】(1)由题意知:抛物线的准线为,则,可得,∴C的方程为.(2)由(1)知:,由题意知:直线l的斜率存在,令其方程为,∴联立抛物线方程,得:,,若,则,而线段AB中点的纵坐标为-1,∴,即,得,∴直线l的方程为.【点睛】关键点点睛:(1)利用抛物线定义求参数,写出抛物线方程;(2)由直线与抛物线相交,以及相交弦的中点坐标值,应用韦达定理、中点公式求直线斜率,并写出直线方程.22、(1);(2)理由见解析,圆的方程为.【解析】(1)根据给定条件可得,结合勾股定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内蒙古自治区锡林郭勒盟三县联考2024-2025学年八年级上学期1月期末物理试题(无答案)
- 保安员竞赛理论知识考试试题题库及答案
- 2025年度厂房租赁合同书(含环保验收条款)3篇
- 【产业图谱】2024年江阴市重点产业规划布局全景图谱(附产业现状、产业布局、产业发展规划等)
- 2024小班幼儿的评语(33篇)
- 2024版期货融资居间合同协议范本
- 2024铁精粉仓储物流服务合同样本3篇
- 福建省南平市九三英华高级中学高一化学模拟试卷含解析
- 2025年度存量房租赁市场调控合作协议3篇
- 2024版安全生产与环境保护综合管理协议
- 软件租赁合同范例
- 汇川技术在线测评题及答案
- 双方个人协议书模板
- 广东省广州市2023-2024学年高一上学期期末物理试卷(含答案)
- 2024年四川省公务员录用考试《行测》真题及答案解析
- 银行内部管理档案制度
- 电气自动化年终总结
- 第2章-变压器的基本作用原理与理论分析
- 关键IC进料检验规范
- TGDRX 1006-2024 城镇燃气特殊作业安全规程
- 小学五年级体育教案全册(人教版)
评论
0/150
提交评论