版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆哈密石油中学2025届数学高二上期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“方程表示双曲线”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.早在古希腊时期,亚历山大的科学家赫伦就发现:光从一点直接传播到另一点选择最短路径,即这两点间的线段.若光从一点不是直接传播到另一点,而是经由一面镜子(即便镜面是曲面)反射到另一点,仍然选择最短路径.已知曲线,且将假设为能起完全反射作用的曲面镜,若光从点射出,经由上一点反射到点,则()A. B.C. D.3.直线与曲线相切于点,则()A. B.C. D.4.点A是曲线上任意一点,则点A到直线的最小距离为()A. B.C. D.5.若、、为空间三个单位向量,,且与、所成的角均为,则()A.5 B.C. D.6.已知椭圆的右焦点为,则正数的值是()A.3 B.4C.9 D.217.已知,是双曲线的左、右焦点,点A是的左顶点,为坐标原点,以为直径的圆交的一条渐近线于、两点,以为直径的圆与轴交于两点,且平分,则双曲线的离心率为()A. B.2C. D.38.已知函数在区间有且仅有2个极值点,则m的取值范围是()A. B.C. D.9.数列,,,,…的一个通项公式为()A. B.C. D.10.已知抛物线的焦点为,抛物线的焦点为,点在上,且,则直线的斜率为A. B.C. D.11.执行如图所示的程序框图,若输出的的值为,则输入的的值可能为()A.96 B.97C.98 D.9912.已知函数,若,则()A. B.0C.1 D.2二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为_________14.已知数列满足,则的前20项和___________.15.曲线在处的切线与坐标轴围成的三角形面积为___________.16.下图是4个几何体的展开图,图①是由4个边长为3的正三角形组成;图②是由四个边长为3的正三角形和一个边长为3的正方形组成;图③是由8个边长为3的正三角形组成;图④是由6个边长为3的正方形组成若直径为4的球形容器(不计容器厚度)内有一几何体,则该几何体的展开图可以是______(填所有正确结论的番号)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右焦点分别为,过右焦点作直线交于,其中的周长为的离心率为.(1)求的方程;(2)已知的重心为,设和的面积比为,求实数的取值范围.18.(12分)记为数列的前项和,且(1)求的通项公式;(2)设,求数列的前项和19.(12分)如图,在长方体中,底面是边长为1的正方形,侧棱长为2,且动点P在线段AC上运动(1)若Q为的中点,求点Q到平面的距离;(2)设直线与平面所成角为,求的取值范围20.(12分)已知椭圆的左、右顶点坐标分别是,,短轴长等于焦距.(1)求椭圆的方程;(2)若直线与椭圆相交于两点,线段的中点为,求.21.(12分)解下列不等式:(1);(2).22.(10分)已知数列中,数列的前n项和为满足.(1)证明:数列为等比数列;(2)在和中插入k个数构成一个新数列:,2,,4,6,,8,10,12,,…,其中插入的所有数依次构成首项和公差都为2的等差数列.求数列的前50项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】方程表示双曲线则,解得,是“方程表示双曲线”的充分不必要条件.故选:A2、B【解析】记椭圆的右焦点为,根据椭圆定义,得到,由题中条件,确定本题的本质即是求的最小值,结合题中数据,即可求出结果.【详解】记椭圆的右焦点为,根据椭圆的定义可得,,所以,因为,当且仅当三点共线时,,即;由题意可得,求的值,即是求最短路径,即求的最小值,所以的最小值为,因此.故选:B.【点睛】思路点睛:求解椭圆上动点到一焦点和一定点距离和的最小值或差的最大值时,一般需要利用椭圆的定义,将问题转化为动点与另一焦点以及该定点距离和的最值问题来求解即可.3、A【解析】直线与曲线相切于点,可得求得的导数,可得,即可求得答案.【详解】直线与曲线相切于点将代入可得:解得:由,解得:.可得,根据在上,解得:故故选:A.【点睛】本题考查了根据切点求参数问题,解题关键是掌握函数切线的定义和导数的求法,考查了分析能力和计算能力,属于中档题.4、A【解析】动点在曲线,则找出曲线上某点的斜率与直线的斜率相等的点为距离最小的点,利用导数的几何意义即可【详解】不妨设,定义域为:对求导可得:令解得:(其中舍去)当时,,则此时该点到直线的距离为最小根据点到直线的距离公式可得:解得:故选:A5、C【解析】先求的平方后再求解即可.【详解】,故,故选:C6、A【解析】由直接可得.【详解】由题知,所以,因为,所以.故选:A7、B【解析】由直径所对圆周角是直角,结合双曲线的几何性质和角平分线定义可解.【详解】由圆的性质可知,,,所以,因为,所以又因为平分,所以,由,得,所以,即所以故选:B8、A【解析】根据导数的性质,结合余弦型函数的性质、极值的定义进行求解即可.【详解】由,,因为在区间有且仅有2个极值点,所以令,解得,因此有,故选:A9、B【解析】根据给定数列,结合选项提供通项公式,将n代入验证法判断是否为通项公式.【详解】A:时,排除;B:数列,,,,…满足.C:时,排除;D:时,排除;故选:B10、B【解析】根据抛物线的定义,求得p的值,即可得抛物线,的标准方程,求得抛物线的焦点坐标后,再根据斜率公式求解.【详解】因为,所以,解得,所以直线的斜率为.故选B.【点睛】本题考查了抛物线的定义的应用,考查了抛物线的简单性质,涉及了直线的斜率公式;抛物线上的点到焦点的距离等于其到准线的距离;解题过程中注意焦点的位置.11、D【解析】根据程序框图得出的变换规律后求解【详解】当时,,当时,,当时,,当时,,可得输出的T关于t的变换周期为4,而,故时,输出的值为,故选:D12、D【解析】求出函数的导数,直接代入即可求值.【详解】因为,所以,所以,所以.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求导,求出切线斜率,用点斜式写出直线方程,化简即可.【详解】,曲线在点处的切线方程为,即故答案为:14、135【解析】直接利用数列的递推关系式写出相邻四项之和,进而求出数列的和.【详解】数列满足,所以,故,当时,,当时,,,当时,,所以.故答案为:135.15、【解析】先求导数,得出切线斜率,写出切线方程,然后可求三角形的面积.【详解】,当时,,所以切线方程为,即;令可得,令可得;所以切线与坐标轴围成的三角形面积为.故答案为:.16、①【解析】根据几何体展开图可知①正四面体、②正四棱锥、③正八面体、④正方体,进而求其外接球半径,并与4比较大小,即可确定答案.【详解】若几何体外接球球心为,半径为,①由题设,几何体为棱长为3的正四面体,为底面中心,则,,所以,可得,即,满足要求;②由题设,几何体为棱长为3的正四棱锥,为底面中心,则,所以,可得,即,不满足要求;③由题设,几何体为棱长为3的正八面体,其外接球直径同棱长为3的正四棱锥,故不满足要求;④由题设,几何体为棱长为3的正方体,体对角线的长度即为外接球直径,所以,不满足要求;故答案为:①三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)已知焦点弦三角形的周长,以及离心率求椭圆方程,待定系数直接求解即可.(2)第一步设点设直线,第二步联立方程韦达定理,第三步条件转化,利用三角形等面积法,列方程,第四步利用韦达定理进行转化,计算即可.【小问1详解】因为的周长为,的离心率为,所以,,所以,,又,所以椭圆的方程为.【小问2详解】方法一:,,的面积为,的面积为,则,得,①设,与椭圆C方程联立,消去得,由韦达定理得,.令,②则,可得当时,当时,所以,又解得③由①②③得,解得.所以实数的取值范围是.方法二:同方法一可得的面积为,的面积为,则,得,①设,与椭圆C方程联立,消去得,由韦达定理得,.所以因为,所以解得②由①②解得.所以实数的取值范围是.18、(1)(2)【解析】(1)利用,再结合等比数列的概念,即可求出结果;(2)由(1)可知数列是以为首项,公差为的等差数列,根据等差数列的前项和公式,即可求出结果.【小问1详解】解:当时,,解得;当且时,所以所以是以为首项,为公比的等比数列所以;【小问2详解】解:由(1)可知,所以,又,所以数列是以为首项,公差为的等差数列,所以数列的前项和.19、(1)1(2)【解析】(1)以AB,AD,为x,y,z轴正向建立直角坐标系,利用空间向量法求出平面的法向量,结合点到平面的距离的向量求法计算即可;(2)设点,,进而得出的坐标,利用向量的数量积即可列出线面角正弦值的表达式,结合二次函数的性质即可得出结果.【小问1详解】由题意,分别以AB,AD,为x,y,z轴正向建立直角坐标系,于是,,,,,设平面法向量所以,解得,,令得,,设点Q到平面的距离为d,【小问2详解】由(1)可知,平面的法向量,由P点在线段AC上运动可设点,于是,,所以,的取值范围是20、(1);(2).【解析】(1)由椭圆顶点可知,又短轴长等于焦距可知,求出,即可写出椭圆方程(2)根据“点差法”可求直线的斜率,写出直线方程,联立椭圆方程可得,,代入弦长公式即可求解.【详解】(1)依题意,解得.故椭圆方程为.(2)设的坐标分别为,,直线的斜率显然存在,设斜率为,则,两式相减得,整理得.因为线段的中点为,所以,所以直线的方程为,联立,得,则,,故.【点睛】本题主要考查了椭圆的标准方程及简单几何性质,“点差法”,弦长公式,属于中档题.21、(1)(2)【解析】(1)利用十字相乘解题即可(2)利用分子分母同号为正,异号为负思想,注意讨论分母不为0【小问1详解】由题,即,解得或,即;【小问2详解】由题,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年智能制造成套装备项目投资申请报告代可行性研究报告
- 2023年体外诊断试剂资金申请报告
- 银行内部控制审计程序制度
- 银行档案管理制度
- 采购档案管理与保密制度
- 市级讲课比赛课件新时代的劳动者
- 梁良良教授课件:创新思维与创新方法
- 大学物资设备采购合同(进口设备)
- 房屋转让居间合同(30篇)
- 了解法律制度自觉遵守宪法
- TSG11-2020 锅炉安全技术规程
- 2022年《导游业务》期末试卷及答案
- 高考生物生态大题习题20题版含答案及解析
- 人员信息登记表
- 防开裂、防渗漏专项施工方案
- T∕CAAA 053-2020 鸭饲养标准
- 中建管理岗位竞聘ppt模板课件
- 团支部工作汇报总结新年计划述职报告PPT模板
- 室外消防及给水管道施工方案
- 最新肿瘤科-胃癌中医临床路径(试行版)
- 赞比亚矿产资源及矿业开发前景分析
评论
0/150
提交评论