山西省运城市2025届数学高一上期末质量跟踪监视模拟试题含解析_第1页
山西省运城市2025届数学高一上期末质量跟踪监视模拟试题含解析_第2页
山西省运城市2025届数学高一上期末质量跟踪监视模拟试题含解析_第3页
山西省运城市2025届数学高一上期末质量跟踪监视模拟试题含解析_第4页
山西省运城市2025届数学高一上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省运城市2025届数学高一上期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的A.充要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件2.函数的值域为()A.(0,+∞) B.(-∞,1)C.(1,+∞) D.(0,1)3.若a=40.9,b=log415,c=80.4,则()A.b>c>a B.a>b>cC.c>a>b D.a>c>b4.设,若直线与直线平行,则的值为A. B.C.或 D.或5.已知直线与直线平行,则的值为A.1 B.3C.-1或3 D.-1或16.设,则()A.3 B.2C.1 D.-17.命题:“”的否定是()A. B.C. D.8.,,,则的大小关系为()A. B.C. D.9.函数的单调递增区间为()A. B.C. D.10.设,则()A.a>b>c B.a>c>bC.c>a>b D.c>b>a二、填空题:本大题共6小题,每小题5分,共30分。11.不等式对任意实数都成立,则实数的取值范围是__________12.已知函数的图像恒过定点,若点也在函数的图像上,则__________13.设函数,则__________14.一个几何体的三视图如图所示(单位:),则该几何体的体积为__________15.函数的最小正周期是________.16.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为___________小时.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知:,若是第四象限角,求,的值;(2)已知,求的值.18.在某单位的食堂中,食堂每天以元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂某天购进了80斤米粉,以(单位:斤)(其中)表示米粉的需求量,(单位:元)表示利润.(Ⅰ)计算当天米粉需求量的平均数,并直接写出需求量的众数和中位数;(Ⅱ)将表示为的函数;(Ⅲ)根据直方图估计该天食堂利润不少于760元的概率.19.设函数且是定义域为的奇函数,(1)若,求的取值范围;(2)若在上的最小值为,求的值20.设函数(1)求函数的值域;(2)设函数,若对,求正实数a的取值范围21.已知函数;(1)若,使得成立,求的集合(2)已知函数的图象关于点对称,当时,.若对使得成立,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据题意“非有志者不能至也”可知到达“奇伟、瑰怪,非常之观”必是有志之士,故“有志”是到达“奇伟、瑰怪,非常之观”的必要条件,故选D.2、D【解析】将函数解析式变形为,再根据指数函数的值域可得结果.【详解】,因为,所以,所以,所以函数的值域为.故选:D3、D【解析】把化为以为底的指数和对数,利用中间值“”以及指数函数的单调性即可比较大小.【详解】,,,又因为为增函数,所以,即综上可得,a>c>b故选:D【点睛】本题考查了利用中间值以及函数的单调性比较数的大小,属于基础题.4、B【解析】由a(a+1)﹣2=0,解得a.经过验证即可得出【详解】由a(a+1)﹣2=0,解得a=﹣2或1经过验证:a=﹣2时两条直线重合,舍去∴a=1故选B【点睛】本题考查了两条直线平行的充要条件,考查了推理能力与计算能力,属于基础题5、A【解析】因为两条直线平行,所以:解得m=1故选A.点睛:本题主要考查直线的方程,两条直线平行与斜率的关系,属于简单题.对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1),需检验不重合;(2),这类问题尽管简单却容易出错,特别是容易遗忘斜率不存在的情况,这一点一定不能掉以轻心.6、B【解析】直接利用诱导公式化简,再根据同角三角函数的基本关系代入计算可得;【详解】解:因为,所以;故选:B7、C【解析】写出全称命题的否定即可.【详解】“”的否定是:.故选:C.8、D【解析】根据对数函数的单调性得到,根据指数函数的单调性得到,根据正弦函数的单调性得到.【详解】易知,,因,函数在区间内单调递增,所以,所以.故选:D.9、C【解析】由解出范围即可.【详解】由,可得,所以函数的单调递增区间为,故选C.10、C【解析】分别求出的范围即可比较.【详解】,,,,,.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用二次不等式与相应的二次函数的关系,易得结果.详解】∵不等式对任意实数都成立,∴∴<k<2故答案为【点睛】(1)二次函数图象与x轴交点的横坐标、二次不等式解集的端点值、一元二次方程的解是同一个量的不同表现形式(2)二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.有关二次函数的问题,利用数形结合的方法求解,密切联系图象是探求解题思路的有效方法12、1【解析】首先确定点A的坐标,然后求解函数的解析式,最后求解的值即可.【详解】令可得,此时,据此可知点A的坐标为,点在函数的图像上,故,解得:,函数的解析式为,则.【点睛】本题主要考查函数恒过定点问题,指数运算法则,对数运算法则等知识,意在考学生的转化能力和计算求解能力.13、【解析】先根据2的范围确定表达式,求出;后再根据的范围确定表达式,求出.【详解】因为,所以,所以.【点睛】分段函数求值问题,要先根据自变量的范围,确定表达式,然后代入求值.要注意由内而外求值,属于基础题.14、【解析】几何体为一个圆锥与一个棱柱的组合体,体积为15、【解析】直接利用三角函数的周期公式,求出函数的周期即可.【详解】函数中,.故答案为:【点睛】本题考查三角函数的周期公式的应用,是基础题.16、【解析】根据图象先求出函数的解析式,然后由已知构造不等式0.25,解不等式可得每毫升血液中含药量不少于0.25微克的起始时刻和结束时刻,他们之间的差值即为服药一次治疗疾病有效的时间【详解】解:当时,函数图象是一个线段,由于过原点与点,故其解析式为,当时,函数的解析式为,因为在曲线上,所以,解得,所以函数的解析式为,综上,,由题意有,解得,所以,所以服药一次治疗疾病有效的时间为个小时,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】(1)由同角间的三角函数关系计算;(2)弦化切后代入计算【详解】(1)因为,若是第四象限角,所以,;(2),则18、(1)平均数为75.5,众数为75,中位数为75.(2).(3)该天食堂利润不少于760元的概率为0.65.【解析】由频率分布直方图的数值计算可得平均数,众数,中位数由题意,当时,求出利润,当时,求出利润,由此能求出关于的函数解析式设利润不少于元为事件,利润不少于元时,即,再根据直方图利用概率计算公式求出对应的概率【详解】(Ⅰ)由频率分布直方图知,故中位数位于(70.,80)设为x,则(x-70)所以平均数为75.5,众数为75,中位数为75.(Ⅱ)一斤米粉的售价是元.当时,当时,故(Ⅲ)设利润不少于760元为事件,利润不少于760元时,即.解得,即.由直方图可知,当时,故该天食堂利润不少于760元的概率为0.65.【点睛】本题主要考查了样本估计总体和事件与概率,只要能读懂条形统计图,然后进行计算即可,较为基础19、(1);(2)2【解析】(1)由题意,得,由此可得,再代入解方程可得,由此可得函数在上为增函数,再根据奇偶性与单调性即可解出不等式;(2)由(1)得,,令,由得,利用换元法转化为二次函数的最值,再分类讨论即可求出答案【详解】解:(1)由题意,得,即,解得,由,得,即,解得,或(舍去),∴,∴函数在上为增函数,由,得∴,解得,或,∴的取值范围是;(2)由(1)得,,令,由得,,∴函数转化为,对称轴,①当时,,即,解得,或(舍去);②当时,,解得(舍去);综上:【点睛】本题主要考查函数奇偶性与单调性的综合应用,考查二次函数的最值问题,考查转化与化归思想,考查分类讨论思想,属于中档题20、(1)函数的值域为.(2)【解析】(1)由已知,利用基本不等式可求函数的值域;(2)由对可得函数函数在上的值域包含与函数在上的值域,由此可求正实数a的取值范围【小问1详解】,,则,当且仅当时取“=”,所以,即函数的值域为.【小问2详解】设,因为所以,函数在上单调递增,则函数在上单调递增,,设时,函数的值域为A.由题意知.函数图象的对称轴为,当,即时,函数在上递增,则,解得,当时,即时,函数在上的最大值为,中的较大者,而且,不合题意,当,即时,函数在上递减,则,满足条件的不存在,综上,21、(1)(2)【解析】(1)根据的值域列不等式,由此求得的取值范围.(2)先求得在时的值域,对进行分类讨论,由此求得的取值范围.【小问1详解】的值域为,所以,,,所以.所以的取值范围是.【小问2详解】由(1),当时,所以在时的值域为记函数的值域为.若对任意的,存在,使得成立,则因为时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论