湖北省恩施2025届高一数学第一学期期末学业质量监测模拟试题含解析_第1页
湖北省恩施2025届高一数学第一学期期末学业质量监测模拟试题含解析_第2页
湖北省恩施2025届高一数学第一学期期末学业质量监测模拟试题含解析_第3页
湖北省恩施2025届高一数学第一学期期末学业质量监测模拟试题含解析_第4页
湖北省恩施2025届高一数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省恩施2025届高一数学第一学期期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.和函数是同一函数的是()A. B.C. D.2.含有三个实数的集合可表示为{a,,1},也可表示为{a2,a+b,0},则a2012+b2013的值为()A.0B.1C.-1D.±13.下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行直线确定三个平面.其中正确有A.1个 B.2个C.3个 D.4个4.已知正方体,则异面直线与所成的角的余弦值为A. B.C. D.5.已知函数是上的增函数,则实数的取值范围为()A. B.C. D.6.已知等比数列满足,,则()A. B.C. D.7.某几何体的三视图如图所示(单位:cm),则该几何体的表面积为()A. B.C. D.8.下列函数中,在上单调递增的是()A. B.C. D.9.如图所示韦恩图中,若A={1,2,3,4,5},B={3,4,5,6,7},则阴影部分表示的集合是()A.2,3,4,5,6, B.2,3,4,C.4,5,6, D.2,6,10.已知函数是定义在R上的减函数,实数a,b,c满足,且,若是函数的一个零点,则下列结论中一定不正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若是的最大值,则实数t的取值范围是______12.在正三角形中,是上的点,,则________13.给出下列四个命题:①函数y=2sin(2x-)的一条对称轴是x=;②函数y=tanx的图象关于点(,0)对称;③正弦函数在第一象限内为增函数;④存在实数α,使sinα+cosα=.以上四个命题中正确的有____(填写正确命题前面的序号).14.已知函数,若对任意的、,,都有成立,则实数的取值范围是______.15.若,则______16.函数的单调递减区间为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若,求实数a的值;(2)若,且,求的值;(3)若函数在的最大值与最小值之和为2,求实数a的值18.如图,正三棱柱的底面边长为3,侧棱,D是CB延长线上一点,且求二面角的正切值;求三棱锥的体积19.计算下列各式(式中字母均是正数).(1)(2)20.已知函数(1)求的单调增区间;(2)当时,求函数最大值和最小值.21.已知幂函数的图象关于轴对称,集合.(1)求的值;(2)当时,的值域为集合,若是成立的充分不必要条件,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据相同的函数定义域,对应法则,值域都相同可知ABC不符合要求,D满足.【详解】的定义域为,值域为,对于A,与的对应法则不同,故不是同一个函数;对于B,的值域为,故不是同一个函数;对于C,的定义域为,故不是同一个函数;对于D,,故与是同一个函数.故选:D2、B【解析】根据题意,由{a,,1}={a2,a+b,0}可得a=0或=0,又由的意义,则a≠0,必有=0,则b=0,则{a,0,1}={a2,a,0},则有a2=1,即a=1或a=-1,集合{a,0,1}中,a≠1,则必有a=-1,则a2012+b2013=(-1)2012+02013=1,故选B点睛:集合的三要素是:确定性、互异性和无序性,集合的表示常用的有三种形式:列举法,描述法,Venn图法.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.3、A【解析】利用三个公理及其推论逐项判断后可得正确的选项.【详解】对于①,三个不共线的点可以确定一个平面,所以①不正确;对于②,一条直线和直线外一点可以确定一个平面,所以②不正确;对于③,若三点共线了,四点一定共面,所以③正确;对于④,当三条平行线共面时,只能确定一个平面,所以④不正确.故选:A.4、A【解析】将平移到,则异面直线与所成的角等于,连接在根据余弦定理易得【详解】设正方体边长为1,将平移到,则异面直线与所成的角等于,连接.则,所以为等边三角形,所以故选A【点睛】此题考查立体几何正方体异面直线问题,异面直线求夹角,将其中一条直线平移到与另外一条直线相交形成的夹角即为异面直线夹角,属于简单题目5、A【解析】根据分段函数是上的增函数,则每一段都为增函数,且右侧的函数值不小于左侧的函数值求解.【详解】函数是上增函数,所以,解得,所以实数的取值范围是故选:A.6、C【解析】由题意可得,所以,故,选C.考点:本题主要考查等比数列性质及基本运算.7、D【解析】借助正方体模型还原几何体,进而求解表面积即可.【详解】解:如图,在边长为的正方体模型中,将三视图还原成直观图为三棱锥,其中,均为直角三角形,为等边三角形,,所以该几何体的表面积为故选:D8、B【解析】利用基本初等函数的单调性可得出合适的选项.【详解】函数、、在上均为减函数,函数在上为增函数.故选:B.9、D【解析】根据图象确定阴影部分的集合元素特点,利用集合的交集和并集进行求解即可【详解】阴影部分对应的集合为{x|x∈A∪B且x∉A∩B},∵A∪B={1,2,3,4,5,6,7},A∩B={3,4,5},∴阴影部分的集合为{1,2,6,7},故选D【点睛】本题主要考查集合的运算,根据Venn图表示集合关系是解决本题的关键10、B【解析】根据函数的单调性可得,再分和两种情况讨论,结合零点的存在性定理即可得出结论.【详解】解:∵是定义在R上的减函数,,∴,∵,∴或,,,当时,,;当,,时,;∴是不可能的.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求出时最大值为,再由是的最大值,解出t的范围.【详解】当时,,由对勾函数的性质可得:在时取得最大值;当时,,且是的最大值,所以,解得:.故答案为:12、【解析】根据正三角形的性质以及向量的数量积的定义式,结合向量的特点,可以确定,故答案为考点:平面向量基本定理,向量的数量积,正三角形的性质13、①②【解析】对于①,将x=代入得是对称轴,命题正确;对于②,由正切函数的图象可知,命题正确;对于③,正弦函数在上是增函数,但在第一象限不能说是增函数,所以③不正确;对于④,,最大值为,不正确;故填①②.14、【解析】分析出函数为上的减函数,结合已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】设,则,由可得,即,所以,函数为上的减函数.由于,由题意可知,函数在上为减函数,则,函数在上为减函数,则,且有,所以,解得.因此,实数的取值范围是.故答案:.【点睛】关键点点睛:在利用分段函数的单调性求参数时,除了分析每支函数的单调性外,还应由间断点处函数值的大小关系得出关于参数的不等式组求解.15、【解析】由二倍角公式,商数关系得,再由诱导公式、商数关系变形求值式,代入已知可得【详解】,所以,故答案为:16、【解析】利用对数型复合函数性质求解即可.【详解】由题知:,解得或.令,则为减函数.所以,为减函数,为增函数,,为增函数,为减函数.所以函数的单调递减区间为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2)1;(3)或【解析】(1)代入直接求解即可;(2)计算可知,由此得到;(3)分析可知函数在的最大值为2,讨论即可得解详解】解:(1)依题意,,即或,解得或;(2)依题意,,又,故,即,故;(3)显然当时,函数取得最小值为0,则函数在的最大值为2,结合(2)可知,,所以,解得或18、(1)2(2)【解析】取BC中点O,中点E,连结OE,OA,以O为原点,OD为x轴,OE为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角的正切值三棱锥的体积,由此能求出结果【详解】取BC中点O,中点E,连结OE,OA,由正三棱柱的底面边长为3,侧棱,D是CB延长线上一点,且以O为原点,OD为x轴,OE为y轴,OA为z轴,建立空间直角坐标系,则3,,0,,0,,0,,所以0,,3,,其中平面ABD的法向量1,,设平面的法向量y,,则,取,得1,,设二面角的平面角为,则,则,则,所以二面角的正切值为2由(1)可得平面,所以是三棱锥的高,且,所以三棱锥的体积:【点睛】本题主要考查了二面角的求解,及空间几何体的体积的计算,其中解答中根据几何体的结构特征,建立适当的空间直角坐标系,利用向量的夹角公式求解二面角问题是求解空间角的常用方法,同时注意“等体积法”在求解三棱锥体积中的应用,着重考查了推理与运算能力,属于中档试题19、(1)2;(2).【解析】(1)利用对数的运算性质即得;(2)利用指数幂的运算法则运算即得.【小问1详解】;【小问2详解】.20、(1)单调递增区间为;(2),.【解析】(1)利用和差公式和倍角公式把化为,然后可解出答案;(2)求出的范围,然

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论