版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省昌乐县第二中学2025届数学高二上期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若是等差数列的前项和,,则()A.13 B.39C.45 D.212.已知实数x,y满足约束条件,则的最大值为()A. B.0C.3 D.53.已知抛物线:的焦点为,为上一点且在第一象限,以为圆心,为半径的圆交的准线于,两点,且,,三点共线,则()A.2 B.4C.6 D.84.七巧板是中国古代劳动人民发明的一种传统智力玩具,它由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为()A. B.C. D.5.已知公差为的等差数列满足,则()A B.C. D.6.若的解集是,则等于()A.-14 B.-6C.6 D.147.如图,在平行六面体中,()A. B.C. D.8.双曲线的焦点到渐近线的距离为()A. B.2C. D.9.已知、是椭圆的两个焦点,P为椭圆C上一点,且,若的面积为9,则的值为()A.1 B.2C.3 D.410.已知,则的大小关系为()A. B.C. D.11.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.12.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是由“杨辉三角”拓展而成的三角形数阵,记为图中虚线上的数1,3,6,10,…构成的数列的第n项,则的值为()A.1225 B.1275C.1326 D.1362二、填空题:本题共4小题,每小题5分,共20分。13.如图,E,F分别是三棱锥的棱AD,BC的中点,,,,则异面直线AB与EF所成的角为______.14.记为等差数列的前n项和.若,则_________.15.设是定义在上的可导函数,且满足,则不等式解集为_______16.已知数列满足,,若为等差数列,则___________,若,则数列的前项和为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题:“,”,命题:“,”,若“且”为真命题,求实数的取值范围18.(12分)已知数列满足各项均不为0,,且,.(1)证明:为等差数列,并求的通项公式;(2)令,,求.19.(12分)某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?20.(12分)如图所示等腰梯形ABCD中,,,,点E为CD的中点,沿AE将折起,使得点D到达F位置.(1)当时,求证:平面AFC;(2)当时,求二面角的余弦值.21.(12分)已知命题p:点在椭圆内;命题q:函数在R上单调递增(1)若p为真命题,求m的取值范围;(2)若为假命题,求实数m的取值范围22.(10分)某学校高一、高二、高三的三个年级学生人数如下表,按年级分层抽样的方法评选优秀学生50人,其中高三有10人.高三高二高一女生100150z男生300450600(1)求z的值;(2)用分层抽样的方法在高一学生中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率;(3)用随机抽样的方法从高二女生中抽取8人,经检测她们的得分如图所示,把这8人的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过5分的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先根据等差数列的通项公式求出,然后根据等差数列的求和公式及等差数列的下标性质求得答案.【详解】设等差数列的公差为d,则,则.故选:B.2、D【解析】先画出可行域,由,得,作出直线,向上平移过点A时,取得最大值,求出点A的坐标,代入可求得结果【详解】不等式组表示的可行域,如图所示由,得,作出直线,向上平移过点A时,取得最大值,由,得,即,所以的最大值为,故选:D3、B【解析】根据,,三点共线,结合点到准线的距离为2,得到,再利用抛物线的定义求解.【详解】如图所示:∵,,三点共线,∴是圆的直径,∴,轴,又为的中点,且点到准线的距离为2,∴,由抛物线的定义可得,故选:B.4、D【解析】设正方形的边长为,计算出阴影部分区域的面积和正方形区域的面积,然后利用几何概型的概率公式计算出所求事件的概率.【详解】设大正方形的边长为,则面积为,阴影部分由一个大等腰直角三角形和一个梯形组成大等腰直角三角形的面积为,梯形的上底为,下底为,高为,面积为,故所求概率故选:D.5、C【解析】根据等差数列前n项和,即可得到答案.【详解】∵数列是公差为的等差数列,∴,∴.故选:C6、A【解析】由一元二次不等式的解集,结合根与系数关系求参数a、b,即可得.【详解】∵的解集为,∴-5和2为方程的两根,∴有,解得,∴.故选:A.7、B【解析】由空间向量的加法的平行四边形法则和三角形法则,可得所求向量【详解】连接,可得,又,所以故选:B.8、A【解析】根据点到直线距离公式进行求解即可.【详解】由双曲线的标准方程可知:,该双曲线的焦点坐标为:,双曲线的渐近线方程为:,所以焦点到渐近线的距离为:,故选:A9、C【解析】根据椭圆定义,和条件列式,再通过变形计算求解.【详解】由条件可知,,即,解得:.故选:C【点睛】本题考查椭圆的定义,焦点三角形的性质,重点考查转化与变形,计算能力,属于基础题型.10、B【解析】构造利用导数判断函数在上单调递减,利用单调性比较大小【详解】设恒成立,函数在上单调递减,.故选:B11、A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,,即,故选A【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来12、B【解析】观察前4项可得,从而可求得结果【详解】由题意可得,……,观察规律可得,所以,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】取的中点,连结,由分别为的中点,可得(或其补角)为异面直线AB与EF所成的角,在求解即可.【详解】取的中点,连结由分别为的中点,则所以(或其补角)为异面直线AB与EF所成的角由分别是的中点,则,又在中,,则所以,又,所以在直角中,故答案为:14、5【解析】根据等差数列前项和的公式及等差数列的性质即可得出答案.【详解】解:,所以.故答案为:5.15、【解析】构造函数,结合题意求得,由此判断出在上递增,由此求解出不等式的解集.【详解】令,,故函数在上单调递增,不等式可化为,则,解得:【点睛】本小题主要考查构造函数法解不等式,考查化归与转化的数学思想方法,属于基础题.16、①.##②.【解析】利用递推关系式,结合等差数列通项公式可求得公差,进而得到;利用递推关系式可知数列的奇数项和偶数项分别成等差数列,采用裂项相消的方法可求得前项和.【详解】由得:,解得:;为等差数列,设其公差为,则,解得:,;由知:数列的奇数项是以为首项,为公差的等差数列;偶数项是以为首项,为公差的等差数列;,又,,数列的前项和,.故答案为:;.【点睛】关键点点睛:本题考查根据数列递推关系求解数列中的项、裂项相消法求和的问题;解题关键是能够根据递推关系式得到数列的奇数项和偶数项分别成等差数列,由此可通过裂项相消的方法求得所求数列的和.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、或【解析】先分别求出,为真时,的范围;再求交集,即可得出结果.【详解】若是真命题.则对任意恒成立,∴;若为真命题,则方程有实根,∴,解得或,由题意,真也真,∴或即实数的取值范围是或.18、(1)证明见解析,,(2)【解析】(1)根据题意,结合递推公式,易知,即可求证;(2)根据题意,结合错位相减法,即可求解.【小问1详解】∵,∴,,∴等差数列,首项为,公差为3.∴,即,.【小问2详解】根据题意,得,,①,②①-②得,故.19、(1);(2),;(3)【解析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数试题解析:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:x=0.0075,所以直方图中x的值是0.0075.-------------3分(2)月平均用电量的众数是=230.-------------5分因为(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5得:a=224,所以月平均用电量的中位数是224.------------8分(3)月平均用电量为[220,240)的用户有0.0125×20×100=25户,月平均用电量为[240,260)的用户有0.0075×20×100=15户,月平均用电量为[260,280)的用户有0.005×20×100=10户,月平均用电量为[280,300]的用户有0.0025×20×100=5户,-------------10分抽取比例==,所以月平均用电量在[220,240)的用户中应抽取25×=5户.--12分考点:频率分布直方图及分层抽样20、(1)证明见解析(2)【解析】(1)结合线面垂直的判定定理来证得结论成立.(2)建立空间直角坐标系,利用向量法来求得二面角的大小.【小问1详解】设,由于四边形是等腰梯形,是的中点,,所以,所以四边形是平行四边形,由于,所以四边形是菱形,所以,由于,是的中点,所以,由于,所以平面.【小问2详解】由于,所以三角形、三角形、三角形是等边三角形,设是的中点,设,则,所以,所以,由于两两垂直.以为空间坐标原点建立如图所示空间直角坐标系,,,平面的法向量为,设平面法向量为,则,故可设,由图可知,二面角为钝角,设二面角为,,则.21、(1)(2)【解析】(1)根据题意列不等式组求解(2)判断的真假性后分别求解【小问1详解】由题意得,解得且故m的取值范围是【小问2详解】∵为假命题,∴p和q都是真命题,对于命题q,由题意得:恒成立,∴,∴,∴,解得故m的取值范围是22、(1)400(2)(3)【解析】(1)根据分层抽样的方法,列出关系式计算即可;(2)根据分层抽样的方法,求出抽取的女生人数,进而列举出从样本中抽取2人的所有情况,可根据古典概型的概率公式计算即可;(3)求出样本平均数,进而求出与样本平均数之差的绝对值不超过5的数,从而利于古典概型的概率公式计算即可.【小问1详解】设该
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年南通货运从业资格证模拟考试下载安装
- 2025年盘锦考货运资格证考试内容
- 2024年旅游风景区开发架子工劳务分包合同
- 2025建设工程专业分包合同范本(通过公司审核)
- 单位人力资源管理制度集锦大合集
- 高端酒店售楼部施工合同
- 2024年桉树种植与城乡绿化合同2篇
- 眼镜店噪声污染控制管理规定
- 停车场耐磨地面施工合同
- 冷链货物托管合同
- 启航计划培训总结与反思
- 《电力工程电缆防火封堵施工工艺导则》
- MOOC 作物育种学-四川农业大学 中国大学慕课答案
- 变电站隐患排查治理总结报告
- 车辆救援及维修服务方案
- 三体读书分享
- 《肾内科品管圈》
- 空气预热器市场前景调研数据分析报告
- 2024年南平实业集团有限公司招聘笔试参考题库附带答案详解
- PLC在变电站自动化控制中的应用案例
- 2024版国开电大法学本科《合同法》历年期末考试案例分析题题库
评论
0/150
提交评论