青海省2025届高一数学第一学期期末调研模拟试题含解析_第1页
青海省2025届高一数学第一学期期末调研模拟试题含解析_第2页
青海省2025届高一数学第一学期期末调研模拟试题含解析_第3页
青海省2025届高一数学第一学期期末调研模拟试题含解析_第4页
青海省2025届高一数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青海省2025届高一数学第一学期期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等腰直角三角形的直角边的长为4,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的表面积为()A. B.C. D.2.已知为上的奇函数,,在为减函数.若,,,则a,b,c的大小关系为A. B.C. D.3.若,则()A B.C. D.4.设,表示两条直线,,表示两个平面,则下列命题正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则5.某市政府为了增加农民收入,决定对该市特色农副产品的科研创新和广开销售渠道加大投入,计划逐年加大研发和宣传资金投入.若该政府2020年全年投人资金120万元,在此基础上,每年投入的资金比上一年增长12%,则该政府全年投入的资金翻一番(2020年的两倍)的年份是(参考数据:lg1.12≈0.05,lg2≈0.30)()A.2027年 B.2026年C.2025年 D.2025届6.利用二分法求方程的近似解,可以取得一个区间A. B.C. D.7.为了得到函数的图像,可以将函数的图像A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度8.已知扇形周长为40,当扇形的面积最大时,扇形的圆心角为()A. B.C.3 D.29.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数(且)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知,动点满足,则动点轨迹与圆位置关系是()A.外离 B.外切C.相交 D.内切10.函数的图象如图所示,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若关于的方程的一个根在区间上,另一个根在区间上,则实数的取值范围是__________12.已知为锐角,,,则__________13.命题“”的否定是______.14.下列四个命题中:①若奇函数在上单调递减,则它在上单调递增②若偶函数在上单调递减,则它在上单调递增;③若函数为奇函数,那么函数的图象关于点中心对称;④若函数为偶函数,那么函数的图象关于直线轴对称;正确的命题的序号是___________.15.如图是某个铁质几何体的三视图,其中每个小正方形格子的边长均为个长度单位,将该铁质几何体熔化,制成一个大铁球,如果在熔制过程中材料没有损耗,则大铁球的表面积为_______________________.16.已知,则满足条件的角的集合为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在充分竞争的市场环境中,产品的定价至关重要,它将影响产品的销量,进而影响生产成本、品牌形象等某公司根据多年的市场经验,总结得到了其生产的产品A在一个销售季度的销量单位:万件与售价单位:元之间满足函数关系,A的单件成本单位:元与销量y之间满足函数关系当产品A的售价在什么范围内时,能使得其销量不低于5万件?当产品A的售价为多少时,总利润最大?注:总利润销量售价单件成本18.已知函数;(1)若,使得成立,求的集合(2)已知函数的图象关于点对称,当时,.若对使得成立,求实数的取值范围19.已知函数,若函数的图象过点,(1)求的值;(2)若,求实数的取值范围;(3)若函数有两个零点,求实数的取值范围.20.若函数,.(1)当时,求函数的最小值;(2)若函数在区间上的最小值是,求实数的值.21.脱贫是政府关注民生的重要任务,了解居民的实际收入状况就显得尤为重要.现从某地区随机抽取个农户,考察每个农户的年收入与年积蓄的情况进行分析,设第个农户的年收入(万元),年积蓄(万元),经过数据处理得(Ⅰ)已知家庭的年结余对年收入具有线性相关关系,求线性回归方程;(Ⅱ)若该地区的农户年积蓄在万以上,即称该农户已达小康生活,请预测农户达到小康生活的最低年收入应为多少万元?附:在中,其中为样本平均值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】如图为等腰直角三角形旋转而成的旋转体这是两个底面半径为,母线长4的圆锥,故S=2πrl=2π××4=故答案为D.2、C【解析】由于为奇函数,故为偶函数,且在上为增函数.,所以,故选C.3、C【解析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果【详解】将式子进行齐次化处理得:故选:C【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论4、D【解析】对选项进行一一判断,选项D为面面垂直判定定理.【详解】对A,与可能异面,故A错;对B,可能在平面内;对C,与平面可能平行,故C错;对D,面面垂直判定定理,故选D.【点睛】本题考查空间中线、面位置关系,判断一个命题为假命题,只要能举出反例即可.5、B【解析】根据题意列出指数方程,取对数,根据对数的运算性质,结合题中所给的数据进行求解即可.【详解】设第n(n∈N*)年该政府全年投入的资金翻一番,依题意得:120(1+12%)n-1=240,则lg[120(1+12%)n-1]=lg240,∴lg120+(n-1)lg1.12=lg240,∴(n-1)lg1.12=lg2,∴,即该政府全年投入的资金翻一番的年份是2026年,故选:B.6、D【解析】根据零点存在定理判断【详解】设,则函数单调递增由于,,∴在上有零点故选:D.【点睛】本题考查方程解与函数零点问题.掌握零点存在定理是解题关键7、B【解析】因为,所以为了得到函数的图像,可以将函数的图像向右平移个单位长度即可.选B8、D【解析】设出扇形半径并表示出弧长后,由扇形面积公式求出取到面积最大时半径的长度,代入圆心角弧度公式即可得解.【详解】设扇形半径,易得,则由已知该扇形弧长为.记扇形面积为,则,当且仅当,即时取到最大值,此时记扇形圆心角为,则故选:D9、C【解析】设动点P的坐标,利用已知条件列出方程,化简可得点P的轨迹方程为圆,再判断圆心距和半径的关系即可得解.,详解】设,由,得,整理得,表示圆心为,半径为的圆,圆的圆心为为圆心,为半径的圆两圆的圆心距为,满足,所以两个圆相交.故选:C.10、C【解析】根据正弦型函数图象与性质,即可求解.【详解】由图可知:,所以,故,又,可求得,,由可得故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设,时,方程只有一个根,不合题意,时,方程的根,就是函数的零点,方程的一个根在区间上,另一个根在区间上,且只需,即,解得,故答案为.12、【解析】由,都是锐角,得出的范围,由和的值,利用同角三角函数的基本关系分别求出和的值,然后把所求式子的角变为,利用两角和与差的余弦函数公式化简计算,即得结果【详解】,都是锐角,,又,,,,则故答案为:.13、【解析】根据全称命题的否定是特称命题,写出结论.【详解】原命题是全称命题,故其否定是特称命题,所以原命题的否定是“”.【点睛】本小题主要考查全称命题的否定是特称命题,除了形式上的否定外,还要注意否定结论,属于基础题.14、②③【解析】根据奇函数、偶函数的性质可判断①②,结合平移变换可判断③④.【详解】奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性,故①错误,②正确;因为函数为奇函数,图象关于原点对称,的图象可以由的图象向右平移1个单位长度得到,故的图象关于点对称,故③正确;函数的图象可以由函数的图象向左平移1个单位长度得到,因为为偶函数,图象关于y轴对称,所以的图象关于直线轴对称,故④错误.故答案为:②③15、【解析】由已知得该铁质几何体是由一个小铁球和一个铁质圆锥体拼接而成,根据圆锥和球体的体积公式可得答案.【详解】该铁质几何体是由一个小铁球和一个铁质圆锥体拼接而成,体积之和为,设制成的大铁球半径为,则,得,故大铁球的表面积为.故答案为:.16、【解析】根据特殊角的三角函数值与正弦函数的性质计算可得;【详解】解:因为,所以或,解得或,因为,所以或,即;故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)14元【解析】(1)根据题中所给的解析式,分情况列出其满足的不等式组,求得结果;(2)根据题意,列出利润对应的解析式,分段求最值,最后比较求得结果.【详解】(1)由得,或解得,或.即.答:当产品A的售价时,其销量y不低于5万件(2)由题意,总利润①当时,,当且仅当时等号成立.②当时,单调递减,所以,时,利润最大.答:当产品A的售价为14元时,总利润最大【点睛】该题考查的是有关函数的应用问题,涉及到的知识点有根据题意列出函数解析式,根据函数解析式求函数的最值,注意认真分析题意,最后求得结果.18、(1)(2)【解析】(1)根据的值域列不等式,由此求得的取值范围.(2)先求得在时的值域,对进行分类讨论,由此求得的取值范围.【小问1详解】的值域为,所以,,,所以.所以的取值范围是.【小问2详解】由(1),当时,所以在时的值域为记函数的值域为.若对任意的,存在,使得成立,则因为时,,所以,即函数的图象过对称中心(i)当,即时,函数在上单调递增,由对称性知,在上单调递增,从而在上单调递增,由对称性得,则要使,只需,解得,所以,(ii)当,即时,函数在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减所以函数在上单调递减,在上单调递增,在上单调递减,,其中,要使,只需,解得,(iii)当,即时,函数在上单调递减,由对称性知,在上单调递减,从而在上单调递减.此时要使,只需,解得,综上可知,实数的取值范围是19、(1).(2).(3).【解析】(1)由函数过点,代入函数即可得的值;(2)由可得的取值范围;(3)由函数的大致图象即可得的取值范围.试题解析:(1),,,.(2),,.(3)当时,是减函数,值域为.偶函数,时,是增函数,值域为,函数有两个零点时,.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.本题中在结合函数图象分析得基础上还用到了方程根的分布的有关知识20、(1)(2)【解析】(1)当时,,当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论