




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省会宁县数学高一上期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若===1,则a,b,c的大小关系是()A.a>b>c B.b>a>cC.a>c>b D.b>c>a2.过定点(1,0)的直线与、为端点的线段有公共点,则k的取值范围是()A. B.C. D.3.下列四组函数中,表示同一个函数的一组是()A.,B.,C.,D.,4.函数fxA.0 B.1C.2 D.35.设直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱AA1、CC1上,且PA=QC1,则四棱锥B-APQC的体积为()A. B.C. D.6.函数(,且)的图象必过定点A. B.C. D.7.已知偶函数在单调递减,则使得成立的的取值范围是A. B.C. D.8.已知直线和互相平行,则实数等于()A.或3 B.C. D.1或9.函数是上的偶函数,则的值是A. B.C. D.10.已知函数f(x)=是奇函数,若f(2m-1)+f(m-2)≥0,则m的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知sinα+cosα=,α∈(-π,0),则tanα=________.12.已知函数,又有定义在R上函数满足:(1),,均恒成立;(2)当时,,则_____,函数在区间中的所有零点之和为_______.13.已知函数是幂函数,且过点,则___________.14.函数为奇函数,且对任意互不相等的,,都有成立,且,则的解集为______15.若,记,,,则P、Q、R的大小关系为______16.直线与平行,则的值为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是二次函数,,(1)求的解析式;(2)解不等式18.已知(1)若,求的值;(2)若,且,求实数的值19.函数的部分图象如图所示.(1)求函数的单调递减区间;(2)将的图象向右平移个单位长度,再将所得图象上所有点的横坐标伸长为原来的π倍(纵坐标不变),得到函数的图象,若在上有两个解,求a的取值范围.20.(1)已知,,求;(2)已知,,求、的值;(3)已知,,且,求的值.21.设函数.(1)若不等式的解集为,求实数a,b的值;(2)若,且存在,使成立,求实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由求出的值,由求得的值,由=1求得的值,从而可得答案【详解】由,可得故,由,可得,故,由,可得,故,故选D【点睛】本题主要考查对数的定义,对数的运算性质的应用,属于基础题.2、C【解析】画出示意图,结合图形及两点间的斜率公式,即可求解.【详解】作示意图如下:设定点为点,则,,故由题意可得的取值范围是故选:C【点睛】本题考查两点间直线斜率公式的应用,要特别注意,直线与线段相交时直线斜率的取值情况.3、B【解析】根据相等函数的判定方法,逐项判断,即可得出结果.【详解】A选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故A错;B选项,因为的定义域为,的定义域也为,且与对应关系一致,是同一函数,故B正确;C选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故C错;D选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故D错.故选:B.4、B【解析】作出函数图像,数形结合求解即可.【详解】解:根据题意,x3-1故函数y=x3与由于函数y=x3与所以方程x3所以函数fx故选:B5、C【解析】为直三棱柱,且,.故C正确考点:棱锥的体积6、C【解析】因为函数,且有(且),令,则,,所以函数的图象经过点.故选:C.【点睛】本题主要考查对数函数(且)恒过定点,属于基础题目.7、C【解析】∵函数为偶函数,∴∵函数在单调递减∴,即∴使得成立的的取值范围是故选C点睛:这个题目考查的是抽象函数的单调性和奇偶性,在不等式中的应用.解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.8、A【解析】由两直线平行,得到,求出,再验证,即可得出结果.详解】∵两条直线和互相平行,∴,解得或,若,则与平行,满足题意;若,则与平行,满足题意;故选:A9、C【解析】分析:由奇偶性可得,化为,从而可得结果.详解:∵是上的偶函数,则,即,即成立,∴,又∵,∴.故选C点睛:本题主要考查函数的奇偶性,属于中档题.已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.10、B【解析】由已知结合f(0)=0求得a=-1,得到函数f(x)在R上为增函数,利用函数单调性化f(2m-1)+f(m-2)≥0为f(2m-1)≥f(-m+2),即2m-1≥-m+2,则答案可求【详解】∵函数f(x)=的定义域为R,且是奇函数,,即a=-1,∵2x在(-∞,+∞)上为增函数,∴函数在(-∞,+∞)上为增函数,由f(2m-1)+f(m-2)≥0,得f(2m-1)≥f(-m+2),∴2m-1≥-m+2,可得m≥1∴m的取值范围为m≥1故选B【点睛】本题考查函数单调性与奇偶性的应用,考查数学转化思想方法,是中档题二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】由题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得和的值,可得的值.【详解】因为sinα+cosα=,①所以sin2α+cos2α+2sinαcosα=,即2sinαcosα=.因为α∈(-π,0),所以sinα<0,cosα>0,所以sinα-cosα=,与sinα+cosα=联立解得sinα=-,cosα=,所以tanα=.故答案为:.【点睛】该题考查的是有关三角函数恒等变换化简求值问题,涉及到的知识点有同角三角函数关系式,在解题的过程中,注意这三个式子是知一求二,属于简单题目.12、①.1②.42【解析】求出的周期和对称轴,再结合图象即可.【详解】由条件可知函数的图象关于对称轴对称,由可知,,则周期,即,函数在区间中的所有零点之和即为函数与函数图象的交点的横坐标之和,当时,为单调递增函数,,,且区间关于对称,又∵由已知得也是的对称轴,∴只需用研究直线左侧部分即可,由图象可知左侧有7个交点,则右侧也有7个交点,将这14个交点的横坐标从小到大排列,第个数记为,由对称性可知,则,同理,…,,∴.故答案为:,.13、【解析】由题意,设代入点坐标可得,计算即得解【详解】由题意,设,过点故,解得故则故答案为:14、【解析】由条件可得函数的单调性,结合,分和利用单调性可解.【详解】因为,时,,所以在上单调递减,又因为为奇函数,且,所以在上单调递减,且.当时,不等式,得;当时,不等式,得.综上,不等式的解集为.故答案:15、【解析】利用平方差公式和同角三角函数的平方关系可得P、R的关系,然后作差,因式分解,结合已知可判断P、Q的大小关系.【详解】又因为,所以所以,即所以P、Q、R的大小关系为.故答案为:16、【解析】根据两直线平行得出实数满足的等式与不等式,解出即可.【详解】由于直线与平行,则,解得.故答案为:.【点睛】本题考查利用两直线平行求参数,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据得对称轴为,再结合顶点可求解;(2)由(1)得,然后直接解不等式即可.【小问1详解】由,知此二次函数图象的对称轴为,又因为,所以是的顶点,所以设因,即所以得所以【小问2详解】因为所以化为,即或不等式的解集为18、(1)(2)【解析】(1)根据同角三角函数的关系,平方化简可得,计算即可得答案.(2)由题意得,可得或,根据的范围,可求得的值,代入即可得答案.【小问1详解】由,可得所以,即,所以【小问2详解】由,可得,解得或,而,所以,解得,所以19、(1),(2)或【解析】(1)根据图像可得函数的周期,从而求得,再根据可求得,从而可得函数解析式,再根据余弦函数的单调性借口整体思想即可求出函数的单调增区间;(2)根据平移变换和周期变换可得,在上有两个解,即为与的图象在上有两个不同的交点,令,则作出函数在上的简图,结合图像即可得出答案.【小问1详解】解:由题图得,,,,,,,,又,,,令,,解得,,函数的单调递减区间为,;【小问2详解】解:将的图象向右平移个单位长度得到的图象,再将图象上的所有点的横坐标伸长为原来的π倍(纵坐标不变),得到函数的图象,若在上有两个解,则与的图象在上有两个不同的交点,令,则作出函数在上的简图,结合图像可得或,所以a的取值范围为或.20、(1);(2),;(3).【解析】(1)利用两角差的正切公式即可求解;(2)利用二倍角公式即可求解;(3)利用和差角公式即可求解.【详解】(1)因为,,所以,即.(2)因为,可得,所以,,因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国牛肉辣椒酱行业市场深度调研及发展趋势与投资前景预测研究报告
- 2025-2030年中国汽车防爆膜行业市场深度调研及竞争格局与投资研究报告
- 开放性骨折诊断与治疗指南讲课件
- 宣传栏可行性研究报告
- 胃肠息肉临床治疗讲课件
- 2020-2025年中国线性驱动行业市场调查研究及投资战略咨询报告
- 小岛教学课件
- 电子花样套结缝纫机行业深度研究分析报告(2024-2030版)
- 大学教学课件教案
- 2025公司年度节能自查报告
- 浙江省城镇生活垃圾分类标准
- 语言学纲要期末复习考点(完整)
- 2024年广西中考道德与法治试卷真题(含答案解析)
- DL-T+796-2012风力发电场安全规程
- 2024中考地理一轮复习专题1地球和地球仪(讲义)(原卷版)
- DL-T-1642-2016环形混凝土电杆用脚扣
- SF-36生活质量调查表(SF-36-含评分细则)
- 畜禽生产概论-形考任务3-国开(HB)-参考资料
- 人类普遍交往与世界历史的形成发展
- 隐龙山墓园规划方案
- 矿灯管理工培训课件
评论
0/150
提交评论