




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州市建人高复2025届高二数学第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设双曲线()的焦距为12,则()A.1 B.2C.3 D.42.方程表示的曲线经过的一点是()A. B.C. D.3.若复数满足,则复平面内表示的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.为比较甲、乙两地某月时的气温状况,随机选取该月中的天,将这天中时的气温数据(单位:℃)制成如图所示的茎叶图(十位数字为茎,个位数字为叶).考虑以下结论:①甲地该月时的平均气温低于乙地该月时的平均气温;②甲地该月时的平均气温高于乙地该月时的平均气温;③甲地该月时的气温的标准差小于乙地该月时的气温的标准差;④甲地该月时的气温的标准差大于乙地该月时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③ B.①④C.②③ D.②④5.在的展开式中,只有第4项的二项式系数最大,且所有项的系数和为0,则含的项的系数为()A.-20 B.-15C.-6 D.156.已知正方体的棱长为1,且满足,则的最小值是()A. B.C. D.7.如图,在平行六面体(底面为平行四边形的四棱柱)中,E为延长线上一点,,则为()A. B.C. D.8.甲、乙两名同学同时从教室出发去体育馆打球(路程相等),甲一半时间步行,一半时间跑步;乙一半路程步行,一半路程跑步.如果两人步行速度、跑步速度均相等,则()A.甲先到体育馆 B.乙先到体育馆C.两人同时到体育馆 D.不确定谁先到体育馆9.设等差数列的前项和为,已知,,则的公差为()A.2 B.3C.4 D.510.在区间内随机取一个数,则方程表示焦点在轴上的椭圆的概率是A. B.C. D.11.已知不等式解集为,下列结论正确的是()A. B.C D.12.设拋物线的焦点为F,准线为l,P为拋物线上一点,,A为垂足.如果直线AF的斜率是,那么()A B.C.16 D.8二、填空题:本题共4小题,每小题5分,共20分。13.四棱锥中,底面是一个平行四边形,,,,则四棱锥体积为_______14.求值______.15.已知P,A,B,C四点共面,对空间任意一点O,若,则______.16.如图,椭圆的中心在坐标原点,是椭圆的左焦点,分别是椭圆的右顶点和上顶点,当时,此类椭圆称为“黄金椭圆”,则“黄金椭圆”的离心率___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C:(1)若抛物线C上一点P到F的距离是4,求P的坐标;(2)若不过原点O的直线l与抛物线C交于A、B两点,且,求证:直线l过定点18.(12分)某省食品药品监管局对15个大学食堂“进货渠道合格性”和“食品安全”进行量化评估,满分为10分,大部分大学食堂的评分在7~10分之间,以下表格记录了它们的评分情况:分数段食堂个数1383(1)现从15个大学食堂中随机抽取3个,求至多有1个大学食堂的评分不低于9分的概率;(2)以这15个大学食堂的评分数据评估全国的大学食堂的评分情况,若从全国的大学食堂中任选3个,记X表示抽到评分不低于9分的食堂个数,求X的分布列及数学期望.19.(12分)已知数列满足,且,,成等比数列.(1)求数列的通项公式;(2)设数列的前项和为,求的最小值及此时的值.20.(12分)在平面直角坐标系xOy中,已知椭圆的左、右焦点分别是,,离心率,请再从下面两个条件中选择一个作为已知条件,完成下面的问题:①椭圆C过点;②以点为圆心,3为半径的圆与以点为圆心,1为半径的圆相交,且交点在椭圆C上(只能从①②中选择一个作为已知)(1)求椭圆C的方程;(2)已知过点的直线l交椭圆C于M,N两点,点N关于x轴的对称点为,且,M,三点构成一个三角形,求证:直线过定点,并求面积的最大值.21.(12分)如图是一个正三棱柱(以为底面)被一平面所截得到的几何体,截面为ABC.已知,,M为AB中点.(1)证明:平面;(2)求此几何体的体积.22.(10分)在所有棱长均为2的三棱柱ABC-A1B1C1中,∠B1BC=60°,求证:(1)AB1⊥BC;(2)A1C⊥平面AB1C1.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据可得关于的方程,解方程即可得答案.【详解】因为可化为,所以,则.故选:B.【点睛】本题考查已知双曲线的焦距求参数的值,考查函数与方程思想,考查运算求解能力,属于基础题.2、C【解析】当时可得,可得答案.【详解】当时可得所以方程表示的曲线经过的一点是,且其它点都不满足方程,故选:C3、A【解析】根据复数的运算法则,求得,结合复数的几何意义,即可求解.【详解】由题意,复数满足,可得,所以复数在复平面内对应的点的坐标为,位于第一象限.故选:A.4、B【解析】根据茎叶图数据求出平均数及标准差即可【详解】由茎叶图知甲地该月时的平均气温为,标准差为由茎叶图知乙地该月时的平均气温为,标准差为则甲地该月14时的平均气温低于乙地该月14时的平均气温,故①正确,乙平均气温的标准差小于甲的标准差,故④正确,故正确的是①④,故选:B5、C【解析】先由只有第4项的二项式系数最大,求出n=6;再由展开式的所有项的系数和为0,用赋值法求出,用通项公式求出的项的系数.【详解】∵在的展开式中,只有第4项的二项式系数最大,∴在的展开式有7项,即n=6;而展开式的所有项的系数和为0,令x=1,代入,即,所以.∴是展开式的通项公式为:,要求含的项,只需,解得,所以系数为.故选:C6、C【解析】由空间向量共面定理可得点四点共面,从而将求的最小值转化为求点到平面的距离,再根据等体积法计算.【详解】因为,由空间向量的共面定理可知,点四点共面,即点在平面上,所以的最小值为点到平面的距离,由正方体棱长为,可得是边长为的等边三角形,则,,由等体积法得,,所以,所以的最小值为.故选:C【点睛】共面定理的应用:设是不共面的四点,则对空间任意一点,都存在唯一的有序实数组使得,说明:若,则四点共面.7、B【解析】根据空间向量运算求得正确答案.【详解】.故选:B8、A【解析】设出总路程与步行速度、跑步速度,表示出两人所花时间后比较不等式大小【详解】设总路程为,步行速度,跑步速度对于甲:,得对于乙:,当且仅当时等号成立,而,故,乙花时间多,甲先到体育馆故选:A9、B【解析】由以及等差数列的性质,可得的值,再结合即可求出公差.【详解】解:,得,,又,两式相减得,则.故选:B.10、D【解析】若方程表示焦点在轴上的椭圆,则,解得,,故方程表示焦点在轴上的椭圆的概率是,故选D.11、C【解析】根据不等式解集为,得方程解为或,且,利用韦达定理即可将用表示,即可判断各选项的正误.【详解】解:因为不等式解集为,所以方程的解为或,且,所以,所以,所以,故ABD错误;,故C正确.故选:C.12、D【解析】由题可得方程,进而可得点坐标及点坐标,利用抛物线定义即求【详解】∵抛物线方程为,∴焦点F(2,0),准线l方程为x=−2,∵直线AF的斜率为,直线AF的方程为,由,可得,∵PA⊥l,A为垂足,∴P点纵坐标为,代入抛物线方程,得P点坐标为,∴.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】计算,,得到底面,计算,,计算体积得到答案.【详解】由,,所以底面,,故,体积为.故答案为:16.14、【解析】将原式子变形为:,将代入变形后的式子得到结果即可.【详解】将代入变形后的式子得到结果为故答案为:15、【解析】由条件可得存在实数,使得,再用向量表示出向量,即可得出答案.详解】P,A,B,C四点共面,则存在实数,使得所以即所以,解得故答案为:16、或【解析】写出,,求出,根据以及即可求解,【详解】由题意,,,所以,,因为,则,即,即,所以,即,解得或(舍).故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】(1)由抛物线的定义,可得点的坐标;(2)可设直线的方程为,,,,与抛物线联立,消,利用韦达定理求得,,再根据,可得,从而可求得参数的关系,即可得出结论.【小问1详解】解:设,,由抛物线的定义可知,即,解得,将代入方程,得,即的坐标为;【小问2详解】证明:由题意知直线不能与轴平行,可设直线的方程为,与抛物线联立得,消去得,设,,,则,,由,可得,即,即,即,又,解得,所以直线方程为,当时,,所以直线过定点18、(1)(2)分布列见解析,【解析】(1)利用古典概型的概率公式可求概率.(2)由题设可得,故利用二项分布可求的分布列,利用公式可求其期望.【小问1详解】设至多有1个大学食堂的评分不低于9分为事件,则.所以至多有1个大学食堂的评分不低于9分的概率为.【小问2详解】任意一个大学食堂,其评分不低于9分的概率为,故,所以,,,,的分布列为:0123.19、(1)(2);或【解析】(1)由题意得到数列为公差为的等差数列,结合,,成等比数列,列出方程求得,即可得到数列的通项公式;(2)由,得到时,,当时,,当时,,结合等差数列的求和公式,即可求解.【小问1详解】解:由题意,数列满足,所以数列为公差为的等差数列,又由,,成等比数列,可得,即,解得,所以数列的通项公式.【小问2详解】解:由数列的通项公式,令,即,解得,所以当时,;当时,;当时,,所以当或时,取得最小值,最小值为.20、(1)(2)证明见解析,【解析】(1)若选①,则由题意可得,解方程组求出,从而可求得椭圆方程,若选②,,再结合离心率和求出,从而可求得椭圆方程,(2)由题意设直线MN的方程为,设,,,将直线方程代入椭圆方程中,消去,再利用根与系数的关系,表示出直线的方程,令,求出,结合前面的式子化简可得线过的定点,表示出的面积,利用基本不等式可求得其最大值【小问1详解】若选①:由题意知,∴.所以椭圆C的方程为.若选②:设圆与圆相交于点Q.由题意知:.又因为点Q在椭圆上,所以,∴.又因为,∴,∴.所以椭圆C的方程为.【小问2详解】由题易知直线MN斜率存在且不为0,因为,故设直线MN方程为,设,,,∴,∴,,因为点N关于x轴对称点为,所以,所以直线方程为,令,∴.又,∴.所以直线过定点,∴.当且仅当,即时,取等号.所以面积的最大值为.21、(1)证明见解析(2)【解析】(1)取的中点,连接,,可得四边形为平行四边形,从而可得,然后证明平面,从而可证明.(2)过作截面平面,分别交,于,,连接,作于,由所求几何体体积为从而可得答案.【小问1详解】如图,取的中点,连接,,因为,分别是,的中点.所以且又因为,,所以且,故四边形为平行四边形,所以.因为正三角形,是的中点,所以,又因为平面,所以,又,所以平面又,所以平面.【小问2详解】如图,过作截面平面,分别交,于,,连接,作于,因为平面平面,所以,结合直三棱柱的性质,则平面因为,,,所以.所以所求几何体体积为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 标准模板配色方案(3篇)
- 山体施工防火措施方案(3篇)
- 报酬税务筹划方案(3篇)
- DB23-T2954-2021-直播电商人才培训服务规范-黑龙江省
- DB23-T3058-2021-早春大棚番茄行下内置式秸秆反应堆栽培技术规程-黑龙江省
- 公司对外活动管理制度
- 公共客运公司管理制度
- 包饭公司行政管理制度
- 节约水电措施方案(3篇)
- 工程甲方单位管理制度
- 调度绞车的安全操作知识培训及相关规定
- 湖北省武汉市2025届高三下学期四月调研考试(二模)数学试题 含解析
- 2025年高考历史五大热点主题知识复习汇编
- 肿瘤患者的人文关怀
- 电动车消防安全
- 2025-2030中国电子特气行业市场发展现状及竞争格局与投资前景研究报告
- 高寒环境露天矿电动无人驾驶矿用卡车:智能高效运输系统研发与应用
- 专题5 应用题-2023-2024学年小升初数学备考真题分类汇编(福建地区专版)
- 急性心肌梗死指南
- 无导线永久起搏器护理
- 计算机基础技能测试试题及答案
评论
0/150
提交评论