![2025届重庆育才中学高一数学第一学期期末检测模拟试题含解析_第1页](http://file4.renrendoc.com/view14/M00/3D/20/wKhkGWcmckeAB6FqAAIAGyoZpJA124.jpg)
![2025届重庆育才中学高一数学第一学期期末检测模拟试题含解析_第2页](http://file4.renrendoc.com/view14/M00/3D/20/wKhkGWcmckeAB6FqAAIAGyoZpJA1242.jpg)
![2025届重庆育才中学高一数学第一学期期末检测模拟试题含解析_第3页](http://file4.renrendoc.com/view14/M00/3D/20/wKhkGWcmckeAB6FqAAIAGyoZpJA1243.jpg)
![2025届重庆育才中学高一数学第一学期期末检测模拟试题含解析_第4页](http://file4.renrendoc.com/view14/M00/3D/20/wKhkGWcmckeAB6FqAAIAGyoZpJA1244.jpg)
![2025届重庆育才中学高一数学第一学期期末检测模拟试题含解析_第5页](http://file4.renrendoc.com/view14/M00/3D/20/wKhkGWcmckeAB6FqAAIAGyoZpJA1245.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届重庆育才中学高一数学第一学期期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知幂函数在上单调递减,则()A. B.5C. D.12.命题p:,的否定是()A., B.,C., D.,3.已知函数,若函数恰有8个不同零点,则实数a的取值范围是()A. B.C. D.4.已知全集U=R,集合,,则集合()A. B.C. D.5.如果,那么下列不等式中,一定成立的是()A. B.C. D.6.已知函数,则在下列区间中必有零点的是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)7.下列四个式子中是恒等式的是()A. B.C. D.8.已知点,直线与线段相交,则直线的斜率的取值范围是()A.或 B.C. D.9.已知函数对任意实数都满足,若,则A.-1 B.0C.1 D.210.已知角,且,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.请写出一个同时满足下列两个条件的函数:____________.(1),若则(2)12.已知幂函数的图象经过点(16,4),则k-a的值为___________13.唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮船航行模式之先导,如图,某桨轮船的轮子的半径为,他以的角速度逆时针旋转,轮子外边沿有一点P,点P到船底的距离是H(单位:m),轮子旋转时间为t(单位:s).当时,点P在轮子的最高处.(1)当点P第一次入水时,__________;(2)当时,___________.14.函数的单调增区间是__________15.已知函数,则___________..16.若,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数最小正周期为.(1)求的值:(2)将函数的图象先向左平移个单位,然后向上平移1个单位,得到函数,若在上至少含有4个零点,求b的最小值.18.已知函数是指数函数(1)求的解析式;(2)若,求的取值范围19.已知集合,.(1)当时,求;(2)在①,②,③这三个条件中任选一个,补充在(2)问中的横线上,并求解.若___________,求实数的取值范围.(注:如果选择多个条件分别解答,按第一个解答计分)20.已知函数(1)求证:用单调性定义证明函数是上的严格减函数;(2)已知“函数的图像关于点对称”的充要条件是“对于定义域内任何恒成立”.试用此结论判断函数的图像是否存在对称中心,若存在,求出该对称中心的坐标;若不存在,说明理由;(3)若对任意,都存在及实数,使得,求实数的最大值.21.2021年秋季学期,某省在高一推进新教材,为此该省某市教育部门组织该市全体高中教师在暑假期间进行相关学科培训,培训后举行测试(满分100分),从该市参加测试的数学老师中抽取了100名老师并统计他们的测试分数,将成绩分成五组,第一组[65,70),第二组[70,75),第三组[75,80),第四组[80,85),第五组[85,90],得到如图所示的频率分布直方图(1)求a的值以及这100人中测试成绩在[80,85)的人数;(2)估计全市老师测试成绩的平均数(同组中的每个数据都用该组区间中点值代替)和第50%分数位(保留两位小数);(3)若要从第三、四、五组老师中用分层抽样的方法抽取6人作学习心得交流分享,并在这6人中再抽取2人担当分享交流活动的主持人,求第四组至少有1名老师被抽到的概率
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据幂函数的定义,求得或,再结合幂函数的性质,即可求解.【详解】解:依题意,,故或;而在上单调递减,在上单调递增,故,故选:C.2、C【解析】根据特称命题的否定是全称命题即可求解.【详解】解:命题p:,的否定是:,,故选:C.3、A【解析】利用十字相乘法进行因式分解,然后利用换元法,作出的图象,利用数形结合判断根的个数即可.【详解】由,得,解得或,作出的图象如图,则若,则或,设,由得,此时或,当时,,有两根,当时,,有一个根,则必须有,有个根,设,由得,若,由,得或,有一个根,有两个根,此时有个根,不满足题意;若,由,得,有一个根,不满足条件.若,由,得,有一个根,不满足条件;若,由,得或或,当,有一个根,当时,有个根,当时,有一个根,此时共有个根,满足题意.所以实数a的取值范围为.故选:A.【点睛】方法点睛:已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题第II卷(非选择题4、D【解析】依次计算集合,最后得出结果即可.【详解】,,或,故.故选:D.5、D【解析】取,利用不等式性质可判断ABC选项;利用不等式的性质可判断D选项.【详解】若,则,所以,,,ABC均错;因为,则,因为,则,即.故选:D.6、B【解析】根据存在零点定理,看所给区间的端点值是否异号,,,,所以,那么函数的零点必在区间考点:函数的零点7、D【解析】,故错误,故错误,故错误故选8、A【解析】,所以直线过定点,所以,,直线在到之间,所以或,故选A9、A【解析】由题意首先确定函数的周期性,然后结合所给的关系式确定的值即可.【详解】由可得,据此可得:,即函数是周期为2的函数,且,据此可知.本题选择A选项.【点睛】本题主要考查函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.10、A【解析】依题意可得,再根据,即可得到,从而求出,再根据同角三角函数的基本关系求出,最后利用诱导公式计算可得;【详解】解:因为,所以,因为,所以且,所以,即,所以,所以,所以;故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、,答案不唯一【解析】由条件(1),若则.可知函数为R上增函数;由条件(2).可知函数可能为指数型函数.【详解】令,则为R上增函数,满足条件(1).又,故即成立.故答案为:,(,等均满足题意)12、【解析】根据幂函数的定义得到,代入点,得到的值,从而得到答案.【详解】因为为幂函数,所以,即代入点,得,即,所以,所以.故答案为:.13、①.②.##【解析】算出点从最高点到第一次入水的圆心角,即可求出对应时间;由题意求出关于的表达式,代值运算即可求出对应.【详解】如图所示,当第一次入水时到达点,由几何关系知,又圆的半径为3,故,此时轮子旋转的圆心角为:,故;由题可知,即,当时,.故答案为:;14、,【解析】分析:利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用正弦函数的单调性解不等式,可得到函数的递增区间.详解:,,,由,计算得出,因此函数的单调递增区间为:,故答案为,.点睛:本题主要考查三角函数的单调性,属于中档题.函数的单调区间的求法:(1)代换法:①若,把看作是一个整体,由求得函数的减区间,求得增区间;②若,则利用诱导公式先将的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2)图象法:画出三角函数图象,利用图象求函数的单调区间.15、17【解析】根据分段函数解析式计算可得;【详解】解:因为,故答案为:16、【解析】只需对分子分母同时除以,将原式转化成关于的表达式,最后利用方程思想求出.再利用二倍角的正切公式,即可求得结论【详解】解:,即,故答案为:【点睛】本题考查同角三角函数的关系,考查二倍角的正切公式,正确运用公式是关键,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1(2)【解析】(1)利用平方关系、二倍角余弦公式、辅助角公式化简函数解析式,然后根据周期公式即可求解;(2)利用三角函数的图象变换求出的解析式,然后借助三角函数的图象即可求解.【小问1详解】解:,因为函数的最小正周期为,即,所以;【小问2详解】解:由(1)知,由题意,函数,令,即,因为在上至少含有4个零点,所以,即,所以的最小值为.18、(1)(2)【解析】(1)由指数函数定义可直接构造方程组求得,进而得到所求解析式;(2)将不等式化为,根据对数函数单调性和定义域要求可构造不等式组求得结果.【小问1详解】为指数函数,,解得:,.【小问2详解】由(1)知:,,解得:,的取值范围为.19、(1)(2)选①或.选②③或.【解析】(1)分别求出两个集合,再根据并集的运算即可得解;(2)选①,根据,得,分和两种情况讨论即可得解.选②,根据,得,分和两种情况讨论即可得解.选③,根据,分和两种情况讨论即可得解.【小问1详解】解:当时,,,所以;【小问2详解】解:选①,因为,所以,当时,,解得;当时,因为,所以,解得,综上所述,或.选②,因为,所以,或,当时,,解得,符合题意;当时,因为,所以或,解得或,综上所述,或.选③,当时,,解得,符合题意;当时,因为,所以或,解得或,综上所述,或.20、(1)见解析;(2)存在,为;(3)2.【解析】(1)先设,然后利用作差法比较与的大小即可判断;假设函数的图像存在对称中心,(2)结合函数的对称性及恒成立问题可建立关于,的方程,进而可求,;(3)由已知代入整理可得,的关系,然后结合恒成立可求的范围,进而可求【小问1详解】设,则,∴,∴函数是上的严格减函数;【小问2详解】假设函数的图像存在对称中心,则恒成立,整理得恒成立,∴,解得,,故函数的对称中心为;【小问3详解】∵对任意,,都存在,及实数,使得,∴,即,∴,∴,∵,,∴,,∵,,∴,,,∴,即,∴,∴,即的最大值为221、(1);20;(2)分,76.67分(3)【解析】(1)根据频率之和为1,可求得a的值,根据频数的计算可求得测试成绩在[80,85)的人数;(2)根据频率分布直方图可计算中位数,即可求得第50%分数位;(3)列举出所有可能的抽法,再列出第四组至少有1名老师被抽到可能情况,根据古典概型的概率公式求得答案.【小问1详解】由题意得:,解得;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年家具行业环保认证服务合同范本集
- 2025年度环保技术合同环保设备所有权抵押及运营服务条款
- 绝缘漆项目融资计划书
- 邵阳2025年湖南邵阳市邵阳县县直事业单位选调46人笔试历年参考题库附带答案详解
- 西安2025年陕西西安航空学院招聘笔试历年参考题库附带答案详解
- 苏州江苏苏州市公安局吴中分局招聘警务辅助人员110人笔试历年参考题库附带答案详解
- 聊城2024年山东聊城阳谷县教育类人才回引(5人)笔试历年参考题库附带答案详解
- 盐城江苏盐城市教育局部分直属事业单位招录政府购买服务用工3人笔试历年参考题库附带答案详解
- 玉溪云南玉溪易门县教育体育系统面向2025年毕业生招聘教师6人笔试历年参考题库附带答案详解
- 漯河2024年河南漯河市政协引进高层次人才2人笔试历年参考题库附带答案详解
- 新能源客车安全应急处理指南
- 《电力建设施工技术规范 第2部分:锅炉机组》DLT 5190.2
- 实验室监督人员培训
- 教案设计常见问题及解决措施
- (正式版)JBT 14932-2024 机械式停车设备 停放客车通-用技术规范
- (正式版)JBT 14682-2024 多关节机器人用伺服电动机技术规范
- 2024年职业卫生技术人员评价方向考试题库附答案
- 红楼梦诗词全集
- 苯胺合成靛红工艺
- 三年级上册数学脱式计算大全600题及答案
- 2024年度农村电子商务ppt演示课件
评论
0/150
提交评论