版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市滨海七所重点学校2025届高二上数学期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若任取,则x与y差的绝对值不小于1的概率为()A. B.C. D.2.从全体三位正整数中任取一数,则此数以2为底的对数也是正整数的概率为()A. B.C. D.以上全不对3.如图,、分别为椭圆的左、右焦点,为椭圆上的点,是线段上靠近的三等分点,为正三角形,则椭圆的离心率为()A. B.C. D.4.已知,为正实数,且,则的最小值为()A. B.C. D.15.已知正四面体的底面的中心为为的中点,则直线与所成角的余弦值为()A. B.C. D.6.直线的倾斜角是()A. B.C. D.7.过抛物线的焦点F的直线l与抛物线交于PQ两点,若以线段PQ为直径的圆与直线相切,则()A.8 B.7C.6 D.58.某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为A.11 B.12C.13 D.149.已知函数,则的值为()A. B.C.0 D.110.设函数在定义域内可导,的图像如图所示,则导函数的图象可能为()A. B.C. D.11.已知,则下列不等式一定成立的是()A. B.C. D.12.下列命题中正确的是()A.若为真命题,则为真命题B.在中“”是“”的充分必要条件C.命题“若,则或”的逆否命题是“若或,则”D.命题,使得,则,使得二、填空题:本题共4小题,每小题5分,共20分。13.已知长方体的棱,则异面直线与所成角的大小是________________.(结果用反三角函数值表示)14.的展开式中所有项的系数和为_________15.已知双曲线的左、右焦点分别为,,O为坐标原点,点M是双曲线左支上的一点,若,,则双曲线的离心率是____________16.已知命题:平面上一矩形ABCD的对角线AC与边AB和AD所成角分别为,则,若把它推广到空间长方体中,体对角线与平面,平面,平面所成的角分别为,则可以类比得到的结论为___________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知直线:(t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为(1)求曲线C的直角坐标方程;(2)设点M的直角坐标为,直线l与曲线C的交点为A,B,求的值18.(12分)已知的展开式中只有第五项的二项式系数最大.(1)求该展开式中有理项的项数;(2)求该展开式中系数最大的项.19.(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,PD⊥底面ABCD,点F为棱PD的中点,二面角的余弦值为.(1)求PD的长;(2)求异面直线BF与PA所成角的余弦值;(3)求直线AF与平面BCF所成角的正弦值.20.(12分)已知数列的前n项和,递增等比数列满足,且.(1)求数列,的通项公式;(2)求数列的前n项和为.21.(12分)已知双曲线C:(a>0,b>0)的离心率为,实轴长为2.(1)求双曲线的焦点到渐近线的距离;(2)若直线y=x+m被双曲线C截得的弦长为,求m的值.22.(10分)已知数列和满足,(1)若,求的通项公式;(2)若,,证明为等差数列,并求和的通项公式
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意,在平面直角坐标系中分析以及与差的绝对值不小于1所对应的平面区域,求出其面积,由几何概型公式计算可得答案.【详解】根据题意,,其对应的区域为正方形,其面积,若与差的绝对值不小于1,即,即或,对应的区域为图中的阴影部分,其面积为,故与差的绝对值不小于1的概率.故选:C2、B【解析】利用古典概型的概率求法求解.【详解】从全体三位正整数中任取一数共有900种取法,以2为底的对数也是正整数的三位数有,共3个,所以以此数以2为底的对数也是正整数的概率为,故选:B3、D【解析】根据椭圆定义及正三角形的性质可得到\,再在中运用余弦定理得到、的关系,进而求得椭圆的离心率【详解】由椭圆的定义知,,则,因为正三角形,所以,在中,由余弦定理得,则,,故选:D【点睛】本题考查椭圆的离心率的求解,考查考生的逻辑推理能力及运算求解能力,属于中等题.4、D【解析】利用基本不等式可求的最小值.【详解】可化为,由基本不等式可得,故,当且仅当时等号成立,故的最小值为1,故选:D.5、B【解析】连接,再取中点,连接,得到为直线与所成角,再解三角形即可.【详解】连接,再取中点,连接,因为分别为VC,中点,则,且底面,所以为直线与所成角,令正四面体边长为1,则,,,所以,故选:.6、A【解析】将直线方程化为斜截式,由此确定斜率;根据斜率和倾斜角关系可得结果.【详解】设直线的倾斜角为,则,由得:,则斜率,.故选:A.7、C【解析】依据抛物线定义可以证明:以过抛物线焦点F的弦PQ为直径的圆与其准线相切,则可以顺利求得线段的长.【详解】抛物线的焦点F,准线取PQ中点H,分别过P、Q、H作抛物线准线的垂线,垂足分别为N、M、E则四边形为直角梯形,为梯形中位线,由抛物线定义可知,,,则故,即点H到抛物线准线的距离为的一半,则以线段PQ为直径的圆与抛物线的准线相切.又以线段PQ为直径的圆与直线相切,则以线段PQ为直径的圆的直径等于直线与直线间的距离.即故选:C8、B【解析】使用系统抽样方法,从840人中抽取42人,即从20人抽取1人∴从编号1~480的人中,恰好抽取480/20=24人,接着从编号481~720共240人中抽取240/20=12人考点:系统抽样9、B【解析】对函数求导,然后将代入导数中可得结果.【详解】,则,则,故选:B10、D【解析】根据函数的单调性得到导数的正负,从而得到函数的图象.【详解】由函数的图象可知,当时,单调递增,则,所以A选项和C选项错误;当时,先增,再减,然后再增,则先正,再负,然后再正,所以B选项错误.故选:D.【点睛】本题主要考查函数的单调性和导数的关系,意在考查学生对该知识的掌握水平,属于基础题.一般地,函数在某个区间可导,,则在这个区间是增函数;函数在某个区间可导,,则在这个区间是减函数.11、B【解析】运用不等式的性质及举反例的方法可求解.详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B12、B【解析】A选项,当一真一假时也满足条件,但不满足为真命题;B选项,可以使用正弦定理和大边对大角,大角对大边进行证明;C选项,利用逆否命题的定义进行判断,D选项,特称命题的否定,把存在改为任意,把结论否定,故可判断D选项.【详解】若为真命题,则可能均为真,或一真一假,则可能为真命题,也可能为假命题,故A错误;在中,由正弦定理得:,若,则,从而,同理,若,则由正弦定理得,,所以,故在中“”是“”的充分必要条件,B正确;命题“若,则或”的逆否命题是“若且,则”,故C错误;命题,使得,则,使得,故D错误.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立空间直角坐标系,求出异面直线与的方向向量,再求出两向量的夹角,进而可得异面直线与所成角的大小【详解】解:建立如图所示的空间直角坐标系:在长方体中,,,,,,,,,,异面直线与所成角的大小是故答案为:14、##0.015625【解析】赋值法求解二项式展开式中所有项的系数和.【详解】令得:,即为展开式中所有项的系数和.故答案为:15、5【解析】根据得出,设,从而利用双曲线的定义可求出,的关系,从而可求出答案.【详解】设双曲线的焦距为,则,因为,所以,因为,不妨设,,由双曲线的定义可得,所以,,由勾股定理可得,,所以,所以双曲线的离心率故答案为:.16、【解析】先由线面角的定义得到,再计算的值即可得到结论【详解】在长方体中,连接,在长方体中,平面,所以对角线与平面所成的角为,对角线与平面所成的角为,对角线与平面所成的角为,显然,,,所以,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】【小问1详解】由,得.两边同乘,即.由,得曲线的直角坐标方程为【小问2详解】将代入,得,设A,B对应的参数分别为则所以.由参数的几何意义得18、(1);(2)和【解析】(1)先求出,再写出二项式展开式的通项,令即可求解;(2)设第项系数最大,则,即可解得的值,进而可得展开式中系数最大的项.【详解】(1)由题意可得:,得,的展开式通项为,,要求展开式中有理项,只需令,所以所以有理项有5项,(2)设第项系数最大,则,即,即,解得:,因为,所以或所以,所以展开式中系数最大的项为和.【点睛】解二项式的题关键是求二项式展开式的通项,求有理项需要让的指数位置是整数,求展开式中系数最大的项需要满足第项的系数大于等于第项的系数,第项的系数大于等于第项的系数,属于中档题19、(1)(2)(3)【解析】(1)以为轴,为轴,轴与垂直,建立如图所示的空间直角坐标系,写出各点坐标,设,,由空间向量法求二面角,从而求得,得长;(2)由空间向量法求异面直线所成的角;(3)由空间向量法求线面角【小问1详解】以为轴,为轴,轴与垂直,由于菱形中,轴是的中垂线,建立如图坐标系,则,,,设,,,,设平面一个法向量为,则,令,则,,即,平面的一个法向量是,因为二面角余弦值为.所以,(负值舍去)所以;【小问2详解】由(1),,,,所以异面直线BF与PA所成角的余弦值为【小问3详解】由(1)平面的一个法向量为,又,,所以直线AF与平面BCF所成角的正弦值为20、(1),(2)【解析】(1)先求,再由求出,设等比数列的公比为q,由条件可得,解出结合条件可得答案.(2)由(1)可得,利用错位相减法可求【小问1详解】,当时,,也满足上式,∴,则.设等比数列的公比为q,由得,解得或.因为是递增等比数列,所以,.【小问2详解】①①①②:∴21、(1)(2)【解析】(1)根据已知计算双曲线的基本量,得双曲线焦点坐标及渐近线方程,再用点到直线距离公式得解.(2)直线方程代入双曲线方程,得到关于的一元二次方程,运用韦达定理弦长公式列方程得解.【小问1详解】双曲线离心率为,实轴长为2,,,解得,,,所求双曲线C的方程为;∴双曲线C的焦点坐标为,渐近线方程为,即为,∴双曲线焦点到渐近线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六年级第一学期教学计划范文合集三篇
- 九年级化学教学计划范文锦集7篇
- 销售部年度工作计划
- 师德师风的教师演讲稿模板5篇
- 人寿保险公司实习报告合集六篇
- 关于年会策划方案范文合集6篇
- 大学生顶岗实习周记锦集六篇
- 政府绩效评估 课件 蔡立辉 第6-10章 政府绩效评估的结果应用与改进 -政府绩效评估在当代中国的推进
- 2010年高考一轮复习教案:必修1 第四章 非金属及其化合物 全程教学案
- 2025年农林牧渔专用仪器仪表项目发展计划
- 汽车挂靠租赁协议书(范本)
- 中外广告史(第三版) 课件全套 何玉杰 第0-11章 绪论、中国古代广告的发展- 日本广告的发展
- 泌尿外科诊疗指南
- 沪教牛津版英语2024七年级上册全册知识清单(记忆版)
- 2024中煤矿山建设集团(国独资)招聘200人高频500题难、易错点模拟试题附带答案详解
- 高中地理选择性必修2(综合检测卷)(附答案)-2022-2023学年高二上学期地理选择性必修2
- 未成年消费退款协议书范本
- 政协分组讨论个人发言稿
- 2024年新苏教版六年级上册科学全册知识点 (背诵用)
- DL∕T 5210.6-2019 电力建设施工质量验收规程 第6部分:调整试验
- DL∕T 802.2-2017 电力电缆用导管 第2部分:玻璃纤维增强塑料电缆导管
评论
0/150
提交评论