版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市高邮市2025届高一上数学期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=ln(-x)-x-2的零点所在区间为()A.(-3,-e) B.(-4,-3)C.(-e,-2) D.(-2,-1)2.若,,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角3.已知函数,的图象与直线有两个交点,则的最大值为()A.1 B.2C. D.4.有位同学家开了个小卖部,他为了研究气温对热饮销售的影响,经过统计得到一天所卖的热饮杯数(y)与当天气温(x℃)之间的线性关系,其回归方程为=-2.35x+147.77.如果某天气温为2℃,则该小卖部大约能卖出热饮的杯数是A.140 B.143C.152 D.1565.将函数的图像向左、向下各平移1个单位长度,得到的函数图像,则()A. B.C. D.6.已知幂函数的图象过点,则的值为()A. B.C. D.7.若是三角形的一个内角,且,则的值是()A. B.C.或 D.不存在8.设函数的定义域,函数的定义域为,则()A. B.C. D.9.中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵.那么前3个儿子分到的绵的总数是()A.89斤 B.116斤C.189斤 D.246斤10.不等式的解集为R,则a的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在平行四边形中,为上的中点,若与对角线相交于,且,则__________12.如果直线与直线互相垂直,则实数__________13.设,则________14.2021年10月16日0时23分,搭载神舟十三号载人飞船的长征二号F遥十三运载火箭,在酒泉卫星发射中心点火升空.约582秒后,载人飞船与火箭成功分离,进入预定轨道,发射取得圆满成功.此次航天飞行任务中,火箭起到了非常重要的作用.火箭质量是箭体质量与燃料质量的和,在不考虑空气阻力的条件下,燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比.已知某火箭的箭体质量为mkg,当燃料质量为mkg时,该火箭的最大速度为2ln2km/s,当燃料质量为时,该火箭最大速度为2km/s.若该火箭最大速度达到第一宇宙速度7.9km/s,则燃料质量是箭体质量的_______________倍.(参考数据:)15.实数271316.已知,且,则的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数满足(1)求的最小值;(2)若在上有两个不同的零点,求的取值范围18.如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)证明:平面平面.19.在①,,②,,两个条件中任选一个,补充到下面问题的横线中,并求解该问题.已知函数___________(填序号即可).(1)求函数的解析式及定义域;(2)解不等式.20.已知函数在上的最小值为(1)求的单调递增区间;(2)当时,求最大值以及此时x的取值集合21.已知函数,.(1)用函数单调性的定义证明:是增函数;(2)若,则当为何值时,取得最小值?并求出其最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先计算,,根据函数的零点存在性定理可得函数的零点所在的区间【详解】函数,时函数是连续函数,,,故有,根据函数零点存在性定理可得,函数的零点所在的区间为,故选:【点睛】本题主要考查函数的零点存在性定理的应用,不等式的性质,属于基础题2、B【解析】根据,可判断可能在的象限,根据,可判断可能在的象限,综合分析,即可得答案.【详解】由,可得的终边在第一象限或第二象限或与y轴正半轴重合,由,可得的终边在第二象限或第四象限,因为,同时成立,所以是第二象限角.故选:B3、D【解析】由可得,然后可得的最大值为,即可得到答案.【详解】由可得,所以当时,由与有两个交点可得的最大值为所以则的最大值为故选:D4、B【解析】一个热饮杯数与当天气温之际的线性关系,其回归方程某天气温为时,即则该小卖部大约能卖出热饮的杯数是故选点睛:本题主要考查的知识点是线性回归方程的应用,即根据所给的或者是做出的线性回归方程,预报的值,这是一些解答题5、B【解析】根据函数的图象变换的原则,结合对数的运算性质,准确运算,即可求解.【详解】由题意,将函数的图像向左、向下各平移1个单位长度,可得.故选:B.6、A【解析】待定系数求得幂函数解析式,再求对数运算的结果即可.【详解】设幂函数为,由题意得,,∴故选:A【点睛】本题考查幂函数解析式的求解,涉及对数运算,属综合简单题.7、B【解析】由诱导公式化为,平方求出,结合已知进一步判断角范围,判断符号,求出,然后开方,进而求出的值,与联立,求出,即可求解.【详解】,平方得,,是三角形的一个内角,,,,.故选:B【点睛】本题考查诱导公式化简,考查同角间的三角函数关系求值,要注意,三者关系,知一求三,属于中档题.8、B【解析】求出两个函数的定义域后可求两者的交集.【详解】由得,由得,故,故选:B.【点睛】本题考查函数的定义域和集合的交,函数的定义域一般从以下几个方面考虑:(1)分式的分母不为零;(2)偶次根号(,为偶数)中,;(3)零的零次方没有意义;(4)对数的真数大于零,底数大于零且不为1.9、D【解析】利用等差数列的前项和的公式即可求解.【详解】用表示8个儿子按照年龄从大到小得到的绵数,由题意得数列是公差为17的等差数列,且这8项的和为996,所以,解之得所以,即前3个儿子分到的绵是246斤故选:D10、D【解析】对分成,两种情况进行分类讨论,结合判别式,求得的取值范围.【详解】当时,不等式化为,解集为,符合题意.当时,一元二次不等式对应一元二次方程的判别式,解得.综上所述,的取值范围是.故选:D【点睛】本小题主要考查二次项系数含有参数的一元二次不等式恒成立问题的求解,考查分类讨论的数学思想方法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】由题意如图:根据平行线分线段成比例定理,可知,又因为,所以根据三角形相似判定方法可以知道∵为的中点∴相似比为∴∴故答案为312、或2【解析】分别对两条直线的斜率存在和不存在进行讨论,利用两条直线互相垂直的充要条件,得到关于的方程可求得结果【详解】设直线为直线;直线为直线,①当直线率不存在时,即,时,直线的斜率为0,故直线与直线互相垂直,所以时两直线互相垂直②当直线和斜率都存在时,,要使两直线互相垂直,即让两直线的斜率相乘为,故③当直线斜率不存在时,显然两直线不垂直,综上所述:或,故答案为或.【点睛】本题主要考查两直线垂直的充要条件,若利用斜率之积等于,应注意斜率不存在的情况,属于中档题.13、【解析】根据自变量取值判断使用哪一段解析式求解,分别代入求解即可【详解】解:因为,所以,所以故答案为:114、51【解析】设燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比的比例系数为k,根据条件列方程求出k值,再设当该火箭最大速度达到第--宇宙速度7.9km/s时,燃料质量是箭体质量的a倍,根据题中数据再列方程可得a值.【详解】设燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比的比例系数为k,则,解得,设当该火箭最大速度达到第一宇宙速度7.9km/s时,燃料质量是箭体质量的a倍,则,得,则燃料质量是箭体质量的51倍故答案为:51.15、1【解析】直接根据指数幂运算与对数运算求解即可.【详解】解:27故答案为:116、【解析】利用已知条件凑出,再根据“”的巧用,最后利用基本不等式即可求解.【详解】由,得,即.因为所以,,则=,当且仅当即时,等号成立.所以当时,取得最小值为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据函数的对称性可得出,再由均值不等式求解即可;(2)根据零点的分布列出不等式组求解即可.【小问1详解】因为满足,所以化简得因为对任意恒成立,所以,即,当且仅当时,等号成立所以当时,取得最小值为【小问2详解】由(1)知.对称轴方程为,因为在上有两个不同的零点,所以解得所以ab的取值范围是18、(1)见解析;(2)见解析【解析】(1)连结,交点,连,推出//1,即可证明平面;(2)取的中点,连结,证明四边形是平行四边形,证明,得到平面,然后证明平面平面试题解析:(1)连结,交点,连,则是的中点,因为是的中点,故//.因为平面,平面.所以//平面.(2)取的中点,连结,因为是的中点,故//且.显然//,且,所以//且则四边形是平行四边形.所以//.因为,所以又,所以直线平面.因为//,所以直线平面.因为平面,所以平面平面19、(1)条件选择见解析,答案见解析;(2)条件选择见解析,答案见解析.【解析】(1)根据所选方案,直接求出的解析式,根据对数的真数大于零可求得函数的定义域;(2)根据所选方案,结合二次不等式和对数函数的单调性可得出原不等式的解集.【小问1详解】解:若选①,,由,解得,故函数定义域为;若选②,,易知函数定义域为.【小问2详解】解:若选①,由(1)知,,因为在上单调递增,且,所以,解得或.所以不等式的解集为;若选②,由(1)知,,令,即,解得,即,因为在上单调递增,且,,所以.所以不等式的解集为.20、(1);(2)最大值为,此时x的取值集合为.【解析】(1)利用二倍角公式化简函数,再利用余弦函数性质列式计算作答.(2)利用余弦函数性质直接计算作答.【小问1详解】依题意,,令,,解得,所以的单调递增区间为.【小问2详解】由(1)知,当时,,,解得,因此,,当,,即,时,取得最大值1,则取得最大值,所以的最大值为,此
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纺织服装厂开标工作纪律
- 保定市物业人力资源开发
- 养鸡场租赁合同:农业旅游融合
- 2025年热力工程设备项目发展计划
- 空间技术招投标法规解析
- 古建筑消防泵房建设协议
- 矿山无人机服务合同
- 百货商店卫生间翻新施工合同
- 医疗卫生安全法规与医疗安全标准
- 木质运动器材制作合同
- 机械原理课程设计压床机构
- 酒店物品艺术赏析智慧树知到期末考试答案2024年
- 交通运输系统导论智慧树知到期末考试答案2024年
- 乳腺腔镜手术介绍
- 服装的生产方案
- JTGT F20-2015 公路路面基层施工技术细则
- 机械加工厂计划管理
- 太阳能光伏发电系统最大功率点跟踪技术研究
- 福维克直销奖金制度完整版
- 银行业声誉风险管理培训
- 四川省成都市成华区2023-2024学年七年级上学期期末语文试题
评论
0/150
提交评论