版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省淮南五中高二数学第一学期期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为()A. B.C. D.2.过点且与原点距离最大的直线方程是()A. B.C. D.3.在平面直角坐标系xOy中,点(0,4)关于直线x-y+1=0的对称点为()A.(-1,2) B.(2,-1)C.(1,3) D.(3,1)4.若变量x,y满足约束条件,则目标函数最大值为()A.1 B.-5C.-2 D.-75.已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴,直线交轴于点.若,则椭圆的离心率是A. B.C. D.6.下列曲线中,与双曲线有相同渐近线是()A. B.C. D.7.已知函数,则等于()A.0 B.2C. D.8.已知,则()A. B.1C. D.9.设函数在上可导,则等于()A. B.C. D.以上都不对10.如图,在平行六面体中,()A. B.C. D.11.已知椭圆+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若AB的中点坐标为(1,-1),则E的方程为A.+=1 B.+=1C.+=1 D.+=112.已知椭圆的左右焦点分别为,,过C上的P作y轴的垂线,垂足为Q,若四边形是菱形,则C的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线被圆所截得的弦的长为_____14.已知直线,抛物线上一动点到直线l的距离为d,则的最小值是______15.设直线的方向向量分别为,若,则实数m等于___________.16.已知双曲线的两条渐近线的夹角为,则_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足(1)求;(2)若,且数列的前n项和为,求证:18.(12分)如图,已知圆C与y轴相切于点,且被x轴正半轴分成的两段圆弧长之比为1∶2(1)求圆C的方程;(2)已知点,是否存在弦被点P平分?若存在,求直线的方程;若不存在,请说明理由19.(12分)在平面直角坐标系内,已知的三个顶点坐标分别为(1)求边的垂直平分线所在的直线的方程;(2)若面积为5,求点的坐标20.(12分)2021年7月25日,在东京奥运会自行车公路赛中,奥地利数学女博士安娜·基秣崔天以3小时52分45秒的成绩获得冠军,震惊了世界!广大网友惊呼“学好数理化,走遍天下都不怕”.某市对中学生的体能测试成绩与数学测试成绩进行分析,并从中随机抽取了200人进行抽样分析,得到下表(单位:人):体能一般体能优秀合计数学一般5050100数学优秀4060100合计90110200(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为“体能优秀”还是“体能一般”与数学成绩有关?(结果精确到小数点后两位)(2)①现从抽取的数学优秀的人中,按“体能优秀”与“体能一般”这两类进行分层抽样抽取10人,然后,再从这10人中随机选出4人,求其中至少有2人是“体能优秀”的概率;②将频率视为概率,以样本估计总体,从该市中学生中随机抽取10人参加座谈会,记其中“体能优秀”的人数为X,求X的数学期望和方差参考公式:,其中参考数据:0.150.100.050.250.0102.0722.7063.8415.0246.63521.(12分)若函数在区间上的最大值为9,最小值为1.(1)求a,b的值;(2)若方程在上有两个不同的解,求实数k的取值范围.22.(10分)已知为各项均为正数的等比数列,且,(1)求数列的通项公式;(2)令,求数列前n项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意可知圆心在第一象限,设圆心的坐标为,可得圆的半径为,写出圆的标准方程,利用点在圆上,求得实数的值,利用点到直线的距离公式可求出圆心到直线的距离.【详解】由于圆上的点在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为,则圆的半径为,圆的标准方程为.由题意可得,可得,解得或,所以圆心的坐标为或,圆心到直线的距离均为;圆心到直线的距离均为圆心到直线的距离均为;所以,圆心到直线的距离为.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.2、A【解析】过点且与原点O距离最远的直线垂直于直线,再由点斜式求解即可【详解】过点且与原点O距离最远的直垂直于直线,,∴过点且与原点O距离最远的直线的斜率为,∴过点且与原点O距离最远的直线方程为:,即.故选:A3、D【解析】设出点(0,4)关于直线的对称点的坐标,根据题意列出方程组,解方程组即可【详解】解:设点(0,4)关于直线x-y+1=0的对称点是(a,b),则,解得:,故选:D4、A【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可【详解】解:由得作出不等式组对应的平面区域如图(阴影部分平移直线,由图象可知当直线,过点时取得最大值,由,解得,所以代入目标函数,得,故选:A5、D【解析】由于BF⊥x轴,故,设,由得,选D.考点:椭圆的简单性质6、B【解析】求出已知双曲线的渐近线方程,逐一验证即可.【详解】双曲线的渐近线方程为,而双曲线的渐近线方程为,双曲线的渐近线方程为,双曲线的渐近线方程为,双曲线的渐近线方程为.故选:B7、D【解析】先通过诱导公式将函数化简,进而求出导函数,然后算出答案.【详解】由题意,,故选:D.8、B【解析】先根据共轭复数的定义可得,再根据复数的运算法则即可求出【详解】因为,所以故选:B9、C【解析】根据目标式,结合导数的定义即可得结果.【详解】.故选:C10、B【解析】由空间向量的加法的平行四边形法则和三角形法则,可得所求向量【详解】连接,可得,又,所以故选:B.11、D【解析】设、,所以,运用点差法,所以直线的斜率为,设直线方程为,联立直线与椭圆的方程,所以;又因为,解得.【考点定位】本题考查直线与圆锥曲线的关系,考查学生的化归与转化能力.12、C【解析】根据题意求出P点坐标,代入椭圆方程中,可整理得到关于a,c的等式,进一步整理为关于e的方程,解得答案.【详解】如图示:由题意可知,因为四边形是菱形,所以,则,所以P点坐标为,将P点坐标为代入得:,整理得,故,由于,解得,所以,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】圆转化为标准式方程,圆心到直线的距离为,圆的半径为,因此所求弦长为考点:1.圆的方程;2.直线被圆截得的弦长的求法;14、##【解析】作直线l,抛物线准线且交y轴于A点,根据抛物线定义有,进而判断目标式最小时的位置关系,结合点线距离公式求最小值.【详解】如下图示:若直线l,抛物线准线且交y轴于A点,则,,由抛物线定义知:,则,所以,要使目标式最小,即最小,当共线时,又,此时.故答案为:.15、2【解析】根据向量垂直与数量积的等价关系,,计算即可.【详解】因为,则其方向向量,,解得.故答案为:2.16、或【解析】首先判断渐近线的倾斜角,再求的值.【详解】由条件可知双曲线的其中一条渐近线方程是,因为两条渐近线的夹角是,所以直线的倾斜角是或,即或.故答案为:或三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)先求得,猜想,然后利用数学归纳法进行证明.(2)利用放缩法证得结论成立.【小问1详解】依题意,,,,猜想,下面用数学归纳法进行证明:当时,结论成立,假设当时结论成立,即,由,,所以当时,有,结论成立,所以当时,.【小问2详解】由(1)得,且为单调递增数列,所以.所以.18、(1).(2).【解析】(1)由已知得圆心C在直线上,设圆C与x轴的交点分别为E、F,则有,,圆心C的坐标为(2,1),由此求得圆C的标准方程;(2)假设存在弦被点P平分,有,由此求得直线AB的斜率可得其方程再检验,直线AB与圆C是否相交即可.小问1详解】解:因为圆C与y轴相切于点,所以圆心C在直线上,设圆C与x轴的交点分别为E、F,由圆C被x轴分成的两段弧长之比为2∶1,得,所以,圆心C的坐标为(2,1),所以圆C的方程为;【小问2详解】解:因为点,有,所以点P在圆C的内部,假设存在弦被点P平分,则,又,所以,所以直线AB的方程为,即,检验,圆心C到直线AB的距离为,所以直线AB与圆C相交,所以存在弦被点P平分,此时直线的方程为.19、(1);(2)或【解析】(1)由题意直线的斜率公式,两直线垂直的性质,求出的斜率,再用点斜式求直线的方程(2)根据面积为5,求得点到直线的距离,再利用点到直线的距离公式,求得的值【详解】解:(1),,的中点的坐标为,又设边的垂直平分线所在的直线的斜率为则,可得的方程为,即边的垂直平分线所在的直线的方程(2)边所在的直线方程为设边上的高为即点到直线的距离为且解得解得或,点的坐标为或20、(1)不能,理由见解析;(2)①,②,【解析】(1)运用公式求出,比较得出结论.(2)①先用分层抽样得到“体能优秀”与“体能一般”的人数,再利用公式计算至少有2人是“体能优秀”的概率.②根据已知条件知此分布列为二项分布,故利用数学期望和方差的公式即可求出答案【小问1详解】由表格的数据可得,,故不能在犯错误的概率不超过0.10的前提下认为“体能优秀”还是“体能一般”与数学成绩有关.【小问2详解】①在数学优秀的人群中,“体能优秀”与“体能一般”的比例为“体能一般”的人数为,“体能优秀”的人数为故再从这10人中随机选出4人,其中至少有2人是“体能优秀”的概率为.②由题意可得,随机抽取一人“体能优秀”的概率为,且故,21、(1)(2)【解析】(1)令
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年小学班主任个人工作总结标准范文(二篇)
- 2024年小单位的车辆管理制度模版(三篇)
- 2024年小学生暑假计划书例文(二篇)
- 2024年工会审查制度例文(四篇)
- 2024年幼儿园小班家长工作计划模版(三篇)
- 2024年小学教研活动总结参考样本(二篇)
- 2024年学校财产管理制度范本(二篇)
- 2024年小学教学工作计划例文(四篇)
- 2024年大学生个人学习计划范文(三篇)
- 2024年客房服务员年终个人总结范文(四篇)
- 设立招投标代理公司可行性研究报告
- 小学一年级禁毒教育
- PCBA工艺管制制程稽查表
- 小学书法大赛评价准则与打分表
- 《朱兰质量手册》课件
- 2024年中煤集团招聘笔试参考题库含答案解析
- 幼儿保育学前教育专业教师教学创新团队建设方案
- 2023年全球疟疾报告
- 15D500-15D505 防雷与接地图集(合订本)
- 江苏省徐州市2023-2024学年部编版八年级上学期期中历史试题
- 档案移交目录表
评论
0/150
提交评论