甘肃省兰州市兰炼一中2025届数学高一上期末统考试题含解析_第1页
甘肃省兰州市兰炼一中2025届数学高一上期末统考试题含解析_第2页
甘肃省兰州市兰炼一中2025届数学高一上期末统考试题含解析_第3页
甘肃省兰州市兰炼一中2025届数学高一上期末统考试题含解析_第4页
甘肃省兰州市兰炼一中2025届数学高一上期末统考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省兰州市兰炼一中2025届数学高一上期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数,则的最大值为()A. B.C.1 D.2.已知,则角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限3.下列表示正确的是A.0∈N B.∈NC.–3∈N D.π∈Q4.若无论实数取何值,直线与圆相交,则的取值范围为()A. B.C. D.5.已知函数,,则函数的值域为()A. B.C. D.6.已知直线:,:,:,若且,则的值为A. B.10C. D.27.利用二分法求方程的近似解,可以取得一个区间A. B.C. D.8.某数学兴趣小组设计了一种螺线,作法如下:在水平直线上取长度为1的线段AB,并作等边三角形ABC,然后以点B为圆心,BA为半径逆时针画圆弧,交线段CB的延长线于点D;再以点C为圆心,CD为半径逆时针画圆弧,交线段AC的延长线于点E,以此类推,得到的螺线如图所示.当螺线与直线有6个交点(不含A点)时,则螺线长度最小值为()A. B.C. D.9.下列各组函数中,表示同一个函数的是()A.与B.与C.与D.与10.已知函数,,若存在,使得,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图象一定过定点,则点的坐标是________.12.已知函数在区间是单调递增函数,则实数的取值范围是______13.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:mg/L)与时间t(单位:h)间的关系为,其中,是正的常数.如果在前5h消除了10%的污染物,那么10h后还剩百分之几的污染物________.14.若弧度数为2的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积是___________15.在空间直角坐标系中,点关于平面的对称点是B,点和点的中点是E,则___________.16.已知是球上的点,,,,则球的表面积等于________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某企业为努力实现“碳中和”目标,计划从明年开始,通过替换清洁能源减少碳排放量,每年减少的碳排放量占上一年的碳排放量的比例均为,并预计年后碳排放量恰好减少为今年碳排放量的一半.(1)求的值;(2)若某一年的碳排放量为今年碳排放量的,按照计划至少再过多少年,碳排放量不超过今年碳排放量的?18.已知圆:关于直线:对称的图形为圆.(1)求圆的方程;(2)直线:,与圆交于,两点,若(为坐标原点)的面积为,求直线的方程.19.已知,且(1)求的值;(2)求的值.20.已知二次函数fx(1)当对称轴为x=-1时,(i)求实数a的值;(ii)求f(x)在区间-2,2上的值域.(2)解不等式fx21.设为奇函数,为常数.(1)求的值(2)若对于上的每一个的值,不等式恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】,然后利用二次函数知识可得答案.【详解】,令,则,当时,,故选:C2、A【解析】根据题意,由于,则说明正弦值和余弦值都是正数,因此可知角所在的象限是第一象限,故选A.考点:三角函数的定义点评:主要是考查了三角函数的定义的运用,属于基础题3、A【解析】根据自然数集以及有理数集的含义判断数与集合关系.【详解】N表示自然数集,在A中,0∈N,故A正确;在B中,,故B错误;在C中,–3∉N,故C错误;Q表示有理数集,在D中,π∉Q,故D错误故选A【点睛】本题考查自然数集、有理数集的含义以及数与集合关系判断,考查基本分析判断能力,属基础题.4、A【解析】利用二元二次方程表示圆的条件及点与圆的位置关系即得.【详解】由圆,可知圆,∴,又∵直线,即,恒过定点,∴点在圆的内部,∴,即,综上,.故选:A.5、B【解析】根据给定条件换元,借助二次函数在闭区间上的最值即可作答.【详解】依题意,函数,,令,则在上单调递增,即,于是有,当时,,此时,,当时,,此时,,所以函数的值域为.故选:B6、C【解析】由且,列出方程,求得,,解得的值,即可求解【详解】由题意,直线:,:,:,因为且,所以,且,解得,,所以故选C【点睛】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线的位置关系,列出方程求解的值是解答的关键,着重考查了推理与计算能力,属于基础题7、D【解析】根据零点存在定理判断【详解】设,则函数单调递增由于,,∴在上有零点故选:D.【点睛】本题考查方程解与函数零点问题.掌握零点存在定理是解题关键8、A【解析】根据题意,找到螺线画法的规律,由此对选项逐一分析,从而得到答案【详解】第1次画线:以点为圆心,,旋转,划过的圆弧长为;第2次画线:以点为圆心,,旋转,划过的圆弧长为,交累计1次;第3次画线:以点为圆心,,旋转,划过的圆弧长为3,交累计2次;第4次画线:以点为圆心,,旋转,划过的圆弧长为;第5次画线:以点为圆心,,旋转,划过的圆弧长为,交累计3次;前5次累计画线;第6次画线:以点为圆心,,旋转,划过的圆弧长为,交累计4次,累计画线;第7次画线:以点为圆心,,旋转,划过的圆弧长为;第8次画线:以点为圆心,,旋转,划过的圆弧长为,交累计5次;第9次画线:以点为圆心,,旋转,划过的圆弧长为,交累计6次,累计画线,故选项A正确故选:A另解:由前三次规律可发现,每画三次,与l产生两个交点,故要产生6个交点,需要画9次;每一次画的圆弧长度是以为首项,为公差的等差数列,所以前9项之和为:﹒故选:A﹒9、B【解析】根据两个函数的定义域相同且对应关系也相同,逐项判断即可【详解】由于函数的定义域为,函数的定义域为,所以与不是同一个函数,故A错误;由于的定义域为,函数且定义域为,所以与是同一函数,故B正确;在函数中,,解得或,所以函数的定义域为,在函数中,,解得,所以的定义域为,所以与不是同一函数,故C错误;由于函数的定义域为,函数定义域为为,所以与不是同一函数,故D错误;故选:B.10、D【解析】根据条件求出两个函数在上的值域,结合若存在,使得,等价为两个集合有公共元素,然后根据集合关系进行求解即可【详解】当时,,即,则的值域为[0,1],当时,,则的值域为,因为存在,使得,则若,则或,得或,则当时,,即实数a的取值范围是,A,B,C错,D对.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令,得,再求出即可得解.【详解】令,得,,所以点的坐标是.故答案:12、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间单调递增函数,则,故答案为:.13、81%【解析】根据题意,利用函数解析式,直接求解.【详解】由题意可知,,所以.所以10小时后污染物含量,即10小时后还剩81%的污染物.故答案为:81%14、【解析】根据所给弦长,圆心角求出所在圆的半径,利用扇形面积公式求解.【详解】由弦长为2,圆心角为2可知扇形所在圆的半径,故,故答案为:15、【解析】先利用对称性求得点B坐标,再利用中点坐标公式求得点E坐标,然后利用两点间距离公式求解.【详解】因为点关于平面的对称点是,点和点的中点是,所以,故答案为:16、【解析】由已知S,A,B,C是球O表面上的点,所以,又,,所以四面体的外接球半径等于以长宽高分别以SA,AB,BC三边长为长方体的外接球的半径,因为,,所以,所以球的表面积点睛:本题考查了球内接多面体,球的表面积公式,属于中档题.其中根据已知条件求球的直径(半径)是解答本题的关键三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)年.【解析】(1)设今年碳排放量为,则由题意得,从而可求出的值;(2)设再过年碳排放量不超过今年碳排放量的,则,再把代入解关于的不等式即可得答案【详解】解:设今年碳排放量为.(1)由题意得,所以,得.(2)设再过年碳排放量不超过今年碳排放量,则,将代入得,即,得.故至少再过年,碳排放量不超过今年碳排放量的.18、(1),(2)【解析】(1)设圆圆心为,则由题意得,求出的值,从而可得所求圆的方程;(2)设圆心到直线:的距离为,原点到直线:的距离为,则有,,再由的面积为,列方程可求出的值,进而可得直线方程【详解】解:(1)设圆的圆心为,由题意可得,则的中点坐标为,因为圆:关于直线:对称的图形为圆,所以,解得,因为圆和圆的半径相同,即,所以圆的方程为,(2)设圆心到直线:的距离为,原点到直线:的距离为,则,,所以所以,解得,因为,所以,所以直线的方程为【点睛】关键点点睛:此题考查圆的方程的求法,考查直线与圆的位置关系,解题的关键是利用点到直线的距离公式表示出圆心到直线的距离为,原点到直线的距离为,再表示出,从而由的面积为,得,进而可求出的值,问题得到解决,考查计算能力,属于中档题19、(1)7(2)【解析】(1)根据题意求得,然后利用两角和的正切公式即可得出答案;(2)利用诱导公式及二倍角的余弦公式,结合平方关系化弦为切计算即可得解.【小问1详解】解:由已知得,或,∴或,又∵,∴或,又∵,∴,∴,∴;【小问2详解】解:.20、(1)(i)-13;(ii)(2)答案见解析.【解析】(1)(i)解方程(a+1)2a=-1即得解;((2)对a分类讨论解不等式.【小问1详解】解:(i)由题得--(a+1)(ii)fx=-1所以当x∈-2,2时,ff(x)所以f(x)在区间-2,2上的值域为[-5【小问2详解】解:ax当a=0时,-x+1≥0,∴x≤1;当a>0时,(ax-1)(x-1)≥0,∴x当0<a<1时,不等式解集为{x|x≥1a或x≤1}当a=1时,不等式的解集为R;当a>1时,不等式的解集为{x|x≥1或x≤1当a<0时,(ax-1)(-x+1)≤0,∴x所以不等式的解集为{x|1综上,当a=0时,不等式的解集为{x|x≤1}当0<a<1时,不等式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论