版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省仁寿县文宫中学2025届高一上数学期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对,不等式恒成立,则a的取值范围是()A. B.C.或 D.或2.已知是定义在上的奇函数,且当时,,那么A. B.C. D.3.已知,则=A.2 B.C. D.14.实数,,的大小关系正确的是()A. B.C. D.5.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中酒精含量上升到.如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少要经过()小时才能驾驶.(参考数据:,)A.1 B.3C.5 D.76.已知集合,集合,则图中阴影部分表示的集合为()A. B.C. D.7.下列函数中,在区间上是增函数是A. B.C. D.8.已知函数,的图象如图,若,,且,则()A.0 B.1C. D.9.的值等于A. B.C. D.10.函数y=sin2x的图象可能是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,则____________.12.已知是定义在R上的奇函数,当时,,则当时,______13.若、是关于x的方程的两个根,则__________.14.函数,若为偶函数,则最小的正数的值为______15.设函数,则__________,方程的解为__________16.集合的非空子集是________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若函数定义域为,且存在非零实数,使得对于任意恒成立,称函数满足性质(1)分别判断下列函数是否满足性质并说明理由①②(2)若函数既满足性质,又满足性质,求函数的解析式(3)若函数满足性质,求证:存在,使得18.已知,(1)求和的值(2)求以及的值19.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数,单位是,其中表示候鸟每分钟耗氧量的单位数,表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:,,)(1)若=3,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少?(2)若=6,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为,雌鸟的飞行速度为,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?20.已知函数,不等式的解集为(1)求不等式的解集;(2)当在上单调递增,求m的取值范围21.化简(1)(2)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】对讨论,结合二次函数的图象与性质,解不等式即可得到的取值范围.【详解】不等式对一切恒成立,当,即时,恒成立,满足题意;当时,要使不等式恒成立,需,即有,解得.综上可得,的取值范围为.故选:A.2、C【解析】由题意得,,故,故选C考点:分段函数的应用.3、D【解析】.故选.4、B【解析】根据指数函数、对数函数的单调性分别判断的取值范围,即可得结果.【详解】由对数函数的单调性可得,根据指数函数的单调性可得,即,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.5、C【解析】设经过个小时才能驾驶,则,再根据指数函数的性质及对数的运算计算可得.详解】设经过个小时才能驾驶,则,即由于在定义域上单调递减,∴∴他至少经过5小时才能驾驶.故选:C6、B【解析】由阴影部分表示的集合为,然后根据集合交集的概念即可求解.【详解】因为阴影部分表示的集合为由于.故选:B.7、A【解析】由题意得函数在上为增函数,函数在上都为减函数.选A8、A【解析】根据图象求得函数解析式,再由,,且,得到的图象关于对称求解.【详解】由图象知:,则,,所以,因在函数图象上,所以,则,解得,因为,则,所以,因为,,且,所以的图象关于对称,所以,故选:A9、C【解析】因为,所以可以运用两角差的正弦公式、余弦公式,求出的值.【详解】,,,故本题选C.【点睛】本题考查了两角差的正弦公式、余弦公式、以及特殊角的三角函数值.其时本题还可以这样解:,.10、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】依据分段函数定义去求的值即可.【详解】由,可得,则由,可得故答案为:12、【解析】根据奇函数的性质求解【详解】时,,是奇函数,此时故答案为:13、【解析】先通过根与系数的关系得到的关系,再通过同角三角函数的基本关系即可解得.【详解】由题意:,所以或,且,所以,即,因为或,所以.故答案为:.14、【解析】根据三角函数的奇偶性知应可用诱导公式化为余弦函数【详解】,其为偶函数,则,,,其中最小的正数为故答案【点睛】本题考查三角函数的奇偶性,解题时直接利用诱导公式分析即可15、①.1②.4或-2【解析】(1)∵,∴(2)当时,由可得,解得;当时,由可得,解得或(舍去)故方程的解为或答案:1,或16、【解析】结合子集的概念,写出集合A的所有非空子集即可.【详解】集合的所有非空子集是.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)①②满足性质,理由见解析(2)(3)证明见解析【解析】(1)计算,,得到答案.(2)根据函数性质变换得到,,,解得答案.(3)根据函数性质得到,取,当时满足条件,得到答案.【小问1详解】,故满足;,故满足.【小问2详解】且,故,,,解得.【小问3详解】,故,取得到,即,取,当时,,故存在满足.18、(1),(2),【解析】(1)根据三角函数的基本关系式,准确运算,即可求解;(2)利用两角差的正弦公式和两角和的正切公式,准确运算,即可求解.【小问1详解】因为,根据三角函数的基本关系式,可得,又因为,所以,且.【小问2详解】由,和根据两角差的正弦公式,可得,再结合两角和的正切公式,可得19、(1)(2)555(3)9【解析】(1)直接代入求值即可,其中要注意对数的运算;(2)还是代入求值即可;(3)代入后得两个方程,此时我们不需要解出、,只要求出它们的比值即可,所以由对数的运算性质,让两式相减,就可求得【小问1详解】解:因为候鸟的飞行速度可以表示为函数,所以将,代入函数式可得:故此时候鸟飞行速度为【小问2详解】解:因为候鸟的飞行速度可以表示为函数,将,代入函数式可得:即所以于是故候鸟停下休息时,它每分钟的耗氧量为555个单位【小问3详解】解:设雄鸟每分钟的耗氧量为,雌鸟每分钟的耗氧量为,依题意可得:,两式相减可得:,于是故此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的9倍20、(1);(2)﹒【解析】(1)根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年带家私家电房产买卖合同(三篇)
- 2024年大学学习部工作计划样本(三篇)
- 2024年小学教师个人总结样本(二篇)
- 2024年各种公共场所的卫生管理制度样本(二篇)
- 2024年工厂质检员岗位职责说明范本(二篇)
- 2024年半年工作总结(四篇)
- 2024年员工入股协议范本(二篇)
- 2024年学校美术教学工作计划模版(四篇)
- 2024年卫生管理制度制度(四篇)
- 【《房建工程施工管理中精细化管理运用探析》3200字】
- 部编版语文教材全套目录小学到高中(2022年)
- JB∕T 13919-2020 低噪声内燃机电站通用规范
- 水土保持工程用表
- 2022年全国小学生天文知识竞赛考试题(含答案)
- 农村一二三产业融合发展课件
- 医学装备管理委员会工作总结
- 最新高中英语新课程标准
- 皮肤软组织感染(SSTI)
- 算法艺术与信息学竞赛
- 高速公路养护中心隧道消防应急演练方案
- 幼儿园小班园本课程食育主题活动案例分享教学设计:《我和面粉做朋友》游戏案例(教案)
评论
0/150
提交评论