2025届河北省张家口一中数学高三第一学期期末统考模拟试题含解析_第1页
2025届河北省张家口一中数学高三第一学期期末统考模拟试题含解析_第2页
2025届河北省张家口一中数学高三第一学期期末统考模拟试题含解析_第3页
2025届河北省张家口一中数学高三第一学期期末统考模拟试题含解析_第4页
2025届河北省张家口一中数学高三第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省张家口一中数学高三第一学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数是奇函数,且,若对,恒成立,则的取值范围是()A. B. C. D.2.已知,,则的大小关系为()A. B. C. D.3.若实数满足不等式组,则的最大值为()A. B. C.3 D.24.已知数列是公比为的正项等比数列,若、满足,则的最小值为()A. B. C. D.5.已知是两条不重合的直线,是两个不重合的平面,下列命题正确的是()A.若,,,,则B.若,,,则C.若,,,则D.若,,,则6.已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为()A. B. C. D.7.过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为()A. B. C. D.8.数列满足:,,,为其前n项和,则()A.0 B.1 C.3 D.49.若直线与曲线相切,则()A.3 B. C.2 D.10.已知锐角满足则()A. B. C. D.11.框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,,,,,,,则图中空白框中应填入()A., B. C., D.,12.半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列与均为等差数列(),且,则______.14.已知(2x-1)7=ao+a1x+a2x2+…+a7x7,则a2=____.15.如图,半圆的直径AB=6,O为圆心,C为半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值为.16.已知角的终边过点,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)证明:当时,;(2)若函数有三个零点,求实数的取值范围.18.(12分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,,,求证:.19.(12分)某企业生产一种产品,从流水线上随机抽取件产品,统计其质量指标值并绘制频率分布直方图(如图1):规定产品的质量指标值在的为劣质品,在的为优等品,在的为特优品,销售时劣质品每件亏损元,优等品每件盈利元,特优品每件盈利元,以这件产品的质量指标值位于各区间的频率代替产品的质量指标值位于该区间的概率.(1)求每件产品的平均销售利润;(2)该企业主管部门为了解企业年营销费用(单位:万元)对年销售量(单位:万件)的影响,对该企业近年的年营销费用和年销售量,数据做了初步处理,得到的散点图(如图2)及一些统计量的值.表中,,,.根据散点图判断,可以作为年销售量(万件)关于年营销费用(万元)的回归方程.①求关于的回归方程;②用所求的回归方程估计该企业每年应投入多少营销费,才能使得该企业的年收益的预报值达到最大?(收益销售利润营销费用,取)附:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计分别为,.20.(12分)我国在2018年社保又出新的好消息,之前流动就业人员跨地区就业后,社保转移接续的手续往往比较繁琐,费时费力.社保改革后将简化手续,深得流动就业人员的赞誉.某市社保局从2018年办理社保的人员中抽取300人,得到其办理手续所需时间(天)与人数的频数分布表:时间人数156090754515(1)若300名办理社保的人员中流动人员210人,非流动人员90人,若办理时间超过4天的人员里非流动人员有60人,请完成办理社保手续所需时间与是否流动人员的列联表,并判断是否有95%的把握认为“办理社保手续所需时间与是否流动人员”有关.列联表如下流动人员非流动人员总计办理社保手续所需时间不超过4天办理社保手续所需时间超过4天60总计21090300(2)为了改进工作作风,提高效率,从抽取的300人中办理时间为流动人员中利用分层抽样,抽取12名流动人员召开座谈会,其中3人要求交书面材料,3人中办理的时间为的人数为,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87921.(12分)十八大以来,党中央提出要在2020年实现全面脱贫,为了实现这一目标,国家对“新农合”(新型农村合作医疗)推出了新政,各级财政提高了对“新农合”的补助标准.提高了各项报销的比例,其中门诊报销比例如下:表1:新农合门诊报销比例医院类别村卫生室镇卫生院二甲医院三甲医院门诊报销比例60%40%30%20%根据以往的数据统计,李村一个结算年度门诊就诊人次情况如下:表2:李村一个结算年度门诊就诊情况统计表医院类别村卫生室镇卫生院二甲医院三甲医院一个结算年度内各门诊就诊人次占李村总就诊人次的比例70%10%15%5%如果一个结算年度每人次到村卫生室、镇卫生院、二甲医院、三甲医院门诊平均费用分别为50元、100元、200元、500元.若李村一个结算年度内去门诊就诊人次为2000人次.(Ⅰ)李村在这个结算年度内去三甲医院门诊就诊的人次中,60岁以上的人次占了80%,从去三甲医院门诊就诊的人次中任选2人次,恰好2人次都是60岁以上人次的概率是多少?(Ⅱ)如果将李村这个结算年度内门诊就诊人次占全村总就诊人次的比例视为概率,求李村这个结算年度每人次用于门诊实付费用(报销后个人应承担部分)的分布列与期望.22.(10分)在直角坐标系中,直线的参数方程是为参数),曲线的参数方程是为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求直线和曲线的极坐标方程;(2)已知射线与曲线交于两点,射线与直线交于点,若的面积为1,求的值和弦长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

先根据函数奇偶性求得,利用导数判断函数单调性,利用函数单调性求解不等式即可.【详解】因为函数是奇函数,所以函数是偶函数.,即,又,所以,.函数的定义域为,所以,则函数在上为单调递增函数.又在上,,所以为偶函数,且在上单调递增.由,可得,对恒成立,则,对恒成立,,得,所以的取值范围是.故选:A.【点睛】本题考查利用函数单调性求解不等式,根据方程组法求函数解析式,利用导数判断函数单调性,属压轴题.2、D【解析】

由指数函数的图像与性质易得最小,利用作差法,结合对数换底公式及基本不等式的性质即可比较和的大小关系,进而得解.【详解】根据指数函数的图像与性质可知,由对数函数的图像与性质可知,,所以最小;而由对数换底公式化简可得由基本不等式可知,代入上式可得所以,综上可知,故选:D.【点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.3、C【解析】

作出可行域,直线目标函数对应的直线,平移该直线可得最优解.【详解】作出可行域,如图由射线,线段,射线围成的阴影部分(含边界),作直线,平移直线,当过点时,取得最大值1.故选:C.【点睛】本题考查简单的线性规划问题,解题关键是作出可行域,本题要注意可行域不是一个封闭图形.4、B【解析】

利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值.【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B.【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题.5、B【解析】

根据空间中线线、线面位置关系,逐项判断即可得出结果.【详解】A选项,若,,,,则或与相交;故A错;B选项,若,,则,又,是两个不重合的平面,则,故B正确;C选项,若,,则或或与相交,又,是两个不重合的平面,则或与相交;故C错;D选项,若,,则或或与相交,又,是两个不重合的平面,则或与相交;故D错;故选B【点睛】本题主要考查与线面、线线相关的命题,熟记线线、线面位置关系,即可求解,属于常考题型.6、B【解析】

根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【详解】函数则函数的最大值为2,存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即故答案为:B.【点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.7、C【解析】

联立方程解得M(3,),根据MN⊥l得|MN|=|MF|=4,得到△MNF是边长为4的等边三角形,计算距离得到答案.【详解】依题意得F(1,0),则直线FM的方程是y=(x-1).由得x=或x=3.由M在x轴的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直线FM的倾斜角,即∠NMF=60°,因此△MNF是边长为4的等边三角形点M到直线NF的距离为故选:C.【点睛】本题考查了直线和抛物线的位置关系,意在考查学生的计算能力和转化能力.8、D【解析】

用去换中的n,得,相加即可找到数列的周期,再利用计算.【详解】由已知,①,所以②,①+②,得,从而,数列是以6为周期的周期数列,且前6项分别为1,2,1,-1,-2,-1,所以,.故选:D.【点睛】本题考查周期数列的应用,在求时,先算出一个周期的和即,再将表示成即可,本题是一道中档题.9、A【解析】

设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.【详解】设切点为,∵,∴由①得,代入②得,则,,故选A.【点睛】该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.10、C【解析】

利用代入计算即可.【详解】由已知,,因为锐角,所以,,即.故选:C.【点睛】本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.11、A【解析】

依题意问题是,然后按直到型验证即可.【详解】根据题意为了计算7个数的方差,即输出的,观察程序框图可知,应填入,,故选:A.【点睛】本题考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题.12、B【解析】

设正三棱柱上下底面的中心分别为,底面边长与高分别为,利用,可得,进一步得到侧面积,再利用基本不等式求最值即可.【详解】如图所示.设正三棱柱上下底面的中心分别为,底面边长与高分别为,则,在中,,化为,,,当且仅当时取等号,此时.故选:B.【点睛】本题考查正三棱柱与球的切接问题,涉及到基本不等式求最值,考查学生的计算能力,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、20【解析】

设等差数列的公差为,由数列为等差数列,且,根据等差中项的性质可得,,解方程求出公差,代入等差数列的通项公式即可求解.【详解】设等差数列的公差为,由数列为等差数列知,,因为,所以,解得,所以数列的通项公式为,所以.故答案为:【点睛】本题考查等差数列的概念及其通项公式和等差中项;考查运算求解能力;等差中项的运用是求解本题的关键;属于基础题.14、【解析】

根据二项展开式的通项公式即可得结果.【详解】解:(2x-1)7的展开式通式为:当时,,则.故答案为:【点睛】本题考查求二项展开式指定项的系数,是基础题.15、.【解析】.16、【解析】

由题意利用任意角的三角函数的定义,两角和差正弦公式,求得的值.【详解】解:∵角的终边过点,∴,,∴,故答案为:.【点睛】本题主要考查任意角的三角函数的定义,两角和差正弦公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】

(1)要证明,只需证明即可;(2)有3个根,可转化为有3个根,即与有3个不同交点,利用导数作出的图象即可.【详解】(1)令,则,当时,,故在上单调递增,所以,即,所以.(2)由已知,,依题意,有3个零点,即有3个根,显然0不是其根,所以有3个根,令,则,当时,,当时,,当时,,故在单调递减,在,上单调递增,作出的图象,易得.故实数的取值范围为.【点睛】本题考查利用导数证明不等式以及研究函数零点个数问题,考查学生数形结合的思想,是一道中档题.18、(1),.(2)见解析【解析】

(1)分三种情况讨论即可(2)将,的值代入,然后利用均值定理即可.【详解】解:(1)不等式可化为.即有或或.解得,或或.所以不等式的解集为,故,.(2)由(1)知,,即,由,得,,当且仅当,即,时等号成立.故,即.【点睛】考查绝对值不等式的解法以及用均值定理证明不等式,中档题.19、(1)元.(2)①②万元【解析】

(1)每件产品的销售利润为,由已知可得的取值,由频率分布直方图可得劣质品、优等品、特优品的概率,从而可得的概率分布列,依期望公式计算出期望即为平均销售利润;(2)①对取自然对数,得,令,,,则,这就是线性回归方程,由所给公式数据计算出系数,得线性回归方程,从而可求得;②求出收益,可设换元后用导数求出最大值.【详解】解:(1)设每件产品的销售利润为,则的可能取值为,,.由频率分布直方图可得产品为劣质品、优等品、特优品的概率分别为、、.所以;;.所以的分布列为所以(元).即每件产品的平均销售利润为元.(2)①由,得,令,,,则,由表中数据可得,则,所以,即,因为取,所以,故所求的回归方程为.②设年收益为万元,则令,则,,当时,,当时,,所以当,即时,有最大值.即该企业每年应该投入万元营销费,能使得该企业的年收益的预报值达到最大,最大收益为万元.【点睛】本题考查频率分布直方图,考查随机变量概率分布列与期望,考查求线性回归直线方程,及回归方程的应用.在求指数型回归方程时,可通过取对数的方法转化为求线性回归直线方程,然后再求出指数型回归方程.20、(1)列联表见解析,有;(2)分布列见解析,.【解析】

(1)根据题意,结合已知数据即可填写列联表,计算出的观测值,即可进行判断;(2)先计算出时间在和选取的人数,再求出的可取值,根据古典概型的概率计算公式求得分布列,结合分布列即可求得数学期望.【详解】(1)因为样本数据中有流动人员210人,非流动人员90人,所以办理社保手续所需时间与是否流动人员列联表如下:办理社保手续所需时间与是否流动人员列联表流动人员非流动人员总计办理社保手续所需时间不超过4天453075办理社保手续所需时间超过4天16560225总计21090300结合列联表可算得.有95%的把握认为“办理社保手续所需时间与是否流动人员”有关.(2)根据分层抽样可知时间在可选9人,时间在可以选3名,故,则,,,,可知分布列为0123可知.【点睛】本题考查独立性检验中的计算,以及离散型随机变量的分布列以及数学期望,涉及分层抽样,属综合性中档题.21、(Ⅰ);(Ⅱ)的发分布列为:X20601

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论