版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市庐江县2025届高二数学第一学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知中,内角所对的边分别,若,,,则()A. B.C. D.2.曲线上存在两点A,B到直线到距离等于到的距离,则()A.12 B.13C.14 D.153.已知点是椭圆上的任意点,是椭圆的左焦点,是的中点,则的周长为()A. B.C. D.4.若,满足约束条件则的最大值是A.-8 B.-3C.0 D.15.已知圆与直线至少有一个公共点,则的取值范围为()A. B.C. D.6.椭圆与双曲线有公共的焦点、,与在第一象限内交于点,是以线段为底边的等腰三角形,若椭圆的离心率的范围是,则双曲线的离心率取值范围是()A. B.C. D.7.如果在一实验中,测得的四组数值分别是,则y与x之间的回归直线方程是()A. B.C. D.8.点M在圆上,点N在直线上,则|MN|的最小值是()A. B.C. D.19.已知数列满足,,数列的前n项和为,若,,成等差数列,则n=()A.6 B.8C.16 D.2210.已知点在平面内,是平面的一个法向量,则下列各点在平面内的是()A. B.C. D.11.二项式的展开式中,各项二项式系数的和是()A.2 B.8C.16 D.3212.下面三种说法中,正确说法的个数为()①如果两个平面有三个公共点,那么这两个平面重合;②两条直线可以确定一个平面;③若,,,则A.1 B.2C.3 D.0二、填空题:本题共4小题,每小题5分,共20分。13.如图,正方形ABCD的边长为8,取正方形ABCD各边的中点E,F,G,H,作第2个正方形EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL.依此方法一直继续下去.①从正方形ABCD开始,第7个正方形的边长为___;②如果这个作图过程可以一直继续下去,那么作到第n个正方形,这n个正方形的面积之和为___.14.在空间直角坐标系中,经过且法向量的平面方程为,经过且方向向量的直线方程为阅读上面材料,并解决下列问题:给出平面的方程,经过点的直线的方程为,则直线l与平面所成角的余弦值为___________.15.已知,,,,使得成立,则实数a的取值范围是___________.16.在中,,,的外接圆半径为,则边c的长为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,正方体的棱长为2,点为的中点.(1)求直线与平面所成角的正弦值;(2)求点到平面的距离.18.(12分)设函数,其中是自然对数的底数,.(1)若,求的最小值;(2)若,证明:恒成立.19.(12分)在平面直角坐标系中,设椭圆()的离心率是e,定义直线为椭圆的“类准线”,已知椭圆C的“类准线”方程为,长轴长为8.(1)求椭圆C的标准方程;(2)O为坐标原点,A为椭圆C的右顶点,直线l交椭圆C于E,F两不同点(点E,F与点A不重合),且满足,若点P满足,求直线的斜率的取值范围.20.(12分)已知椭圆C:经过点,且离心率为(1)求椭圆C的方程;(2)是否存在⊙O:,使得⊙O的任意切线l与椭圆交于A,B两点,都有.若存在,求出r的值,并求此时△AOB的面积S的取值范围;若不存在,请说明理由21.(12分)设圆的圆心为A,直线l过点且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E(1)判断与题中圆A的半径的大小关系,并写出点E的轨迹方程;(2)过点作斜率为,的两条直线,分别交点E的轨迹于M,N两点,且,证明:直线MN必过定点22.(10分)已知圆:,定点,Q为圆上的一动点,点P在半径CQ上,且,设点P的轨迹为曲线E.(1)求曲线E的方程;(2)过点的直线交曲线E于A,B两点,过点H与AB垂直的直线与x轴交于点N,当取最大值时,求直线AB的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用正弦定理可直接求得结果.【详解】在中,由正弦定理得:.故选:B.2、D【解析】由题可知A,B为半圆C与抛物线的交点,利用韦达定理及抛物线的定义即求.【详解】由曲线,可得,即,为圆心为,半径为7半圆,又直线为抛物线的准线,点为抛物线的焦点,依题意可知A,B为半圆C与抛物线的交点,由,得,设,则,,∴.故选:D.3、A【解析】设椭圆另一个焦点为,连接,利用中位线的性质结合椭圆的定义可求得结果.【详解】在椭圆中,,,,如图,设椭圆的另一个焦点为,连接,因为、分别为、的中点,则,则的周长为,故选:A.4、C【解析】作出可行域,把变形为,平移直线过点时,最大.【详解】作出可行域如图:由得:,作出直线,平移直线过点时,.故选C.【点睛】本题主要考查了简单线性规划问题,属于中档题.5、C【解析】利用点到直线距离公式求出圆心到直线的距离范围,从而求出的取值范围.【详解】圆心到直线的距离,当且仅当时等号成立,故只需即可.故选:C6、B【解析】求得,可得出,设椭圆和双曲线的离心率分别为、,可得,由可求得的取值范围.【详解】设,设双曲线的实轴长为,因为与在第一象限内交于点,是以线段为底边的等腰三角形,则,由椭圆的定义可得,由双曲线的定义可得,所以,,则,设椭圆和双曲线的离心率分别为、,则,即,因,则,故.故选:B.7、B【解析】根据已知数据求样本中心点,由样本中心点在回归直线上,将其代入各选项的回归方程验证即可.【详解】由题设,,因为回归直线方程过样本点中心,A:,排除;B:,满足;C:,排除;D:,排除.故选:B8、C【解析】根据题意可知圆心,又由于线外一点到已知直线的垂线段最短,结合点到直线的距离公式,即可求出结果.【详解】由题意可知,圆心,半径为,所以圆心到的距离为,所以的最小值为.故选:C.9、D【解析】利用累加法求得列的通项公式,再利用裂项相消法求得数列的前n项和为,再根据,,成等差数列,得,从而可得出答案.【详解】解:因为,且,所以当时,,因为也满足,所以.因为,所以.若,,成等差数列,则,即,得.故选:D.10、B【解析】设平面内的一点为,由可得,进而可得满足的方程,将选项代入检验即可得正确选项.【详解】设平面内的一点为(不与点重合),则,因为是平面的一个法向量,所以,所以,即,对于A:,故选项A不正确;对于B:,故选项B正确;对于C:,故选项C不正确;对于D:,故选项D不正确,故选:B.11、D【解析】根据给定条件利用二项式系数的性质直接计算作答.【详解】二项式的展开式的各项二项式系数的和是.故选:D12、A【解析】对于①,有两种情况,对于②考虑异面直线,对于③根据线面公理可判断.【详解】如果两个平面有三个公共点,那么这两个平面重合或者是相交,故①不正确;两条异面直线不能确定一个平面,故②不正确;若,,,可知必在交线上,则,故③正确;综上所述只有一个说法是正确的.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、①.1②.【解析】根据题意,正方形边长成等比数列,正方形的面积等于边长的平方可得,然后根据等比数列的通项公式及等比数列的前n项和的公式即可求解.【详解】设第n个正方形的边长为,第n个正方形的面积为,则第n个正方形的对角线长为,所以第n+1个正方形的边长为,,∴数列{}是首项为,公比为的等比数列,,∴,即第7个正方形的边长为1;∴数列{}是首项为,公比为的等比数列,故答案为:1;.14、##【解析】根据材料结合已知条件求得平面的法向量以及直线的方向向量,即可用向量法求得线面角.【详解】因为平面的方程,不妨令,则,故其过点,设其法向量为,根据题意则,即,又平面的方程为,则,不妨取,则,则平面的法向量;经过点的直线的方程为,不妨取,则,则该直线过点,则直线的方向向量.设直线与平面所成的角为,则.又,故,即直线l与平面所成角的余弦值为.故答案为:.15、【解析】由题可得,求导可得的单调性,将的最小值代入,即得.【详解】∵,,使得成立,∴由,得,当时,,∴在区间上单调递减,在区间上单调递增,∴函数在区间上的最小值为又在上单调递增,∴函数在区间上的最小值为,∴,即实数的取值范围是故答案为:.16、【解析】由面积公式求得,结合外接圆半径,利用正弦定理得到边c的长.【详解】,从而,由正弦定理得:,解得:故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)建立空间直角坐标系,求出平面的一个法向量及,利用向量的夹角公式即可得解;(2)直接利用向量公式求解即可【小问1详解】解:以点作坐标原点,建立如图所示的空间直角坐标系,则,0,,,2,,,0,,,0,,设平面的一个法向量为,又,则,则可取,又,设直线与平面的夹角为,则,直线与平面的正弦值为;【小问2详解】解:因为所以点到平面的距离为,点到平面的距离为18、(1)(2)证明见解析【解析】(1)当时,,求出,可得答案;(2)设,,,,,设,求出利用单调性可得答案.【小问1详解】当时,,则,所以单调递增,又,当时,,单调递减,当时,,单调递增,所以.【小问2详解】设,若,则,若,则,设,则,所以单调递增,又,当时,,上单调递减,当时,,单调递增,所以,所以,综上,恒成立.【点睛】本题考查了求函数值域或最值的问题,一般都需要通过导数研究函数的单调性、极值、最值来处理,特别的要根据所求问题,适时构造恰当的函数,再利用所构造函数的单调性、最值解决问题是常用方法,考查了学生分析问题、解决问题的能力.19、(1);(2).【解析】(1)由题意列关于,,的方程,联立方程组求得,,,则椭圆方程可求;(2)分直线轴与直线l不垂直于x轴两种情况讨论,当直线l不垂直于x轴时,设,,直线l:(,),联立直线方程与椭圆方程,消元由,得到,再列出韦达定理,由则,解得,再由,求出的坐标,则,再利用基本不等式求出取值范围;【详解】解:(1)由题意得:,,又,联立以上可得:,,,椭圆C的方程为.(2)由(1)得,当直线轴时,又,联立得,解得或,所以,此时,直线的斜率为0.当直线l不垂直于x轴时,设,,直线l:(,),联立,整理得,依题意,即(*)且,.又,,,即,且t满足(*),,,故直线的斜率,当时,,当且仅当,即时取等号,此时;当时,,当且仅当,即时取等号,此时;综上,直线的斜率的取值范围为.【点睛】本题考查利用待定系数法求椭圆方程,直线与椭圆的综合应用,属于难题.20、(1)(2)存在,,【解析】(1)利用离心率和椭圆所过点列出方程组,求出,求出椭圆方程;(2)假设存在,分切线斜率存在和不存在分类讨论,根据向量数量积为0求出r的值,表达出△AOB的面积,利用基本不等式求出的取值范围,进而求出△AOB面积的取值范围.【小问1详解】因为椭圆C:的离心率,且过点所以解得所以椭圆C的方程为【小问2详解】假设存在⊙O:满足题意,①切线方程l的斜率存在时,设切线方程l:y=kx+m与椭圆方程联立,消去y得,(*)设,,由题意知,(*)有两解所以,即由根与系数的关系可得,所以因为,所以,即化简得,且,O到直线l的距离所以,又,此时,所以满足题意所以存在圆的方程为⊙O:△AOB的面积,又因为当k≠0时当且仅当即时取等号又因为,所以,所以当k=0时,②斜率不存在时,直线与椭圆交于两点或两点易知存在圆的方程为⊙O:且综上,所以【点睛】求解圆锥曲线相关的三角形或四边形面积取值范围问题,需要先设出变量,表达出面积,利用基本不等式或者配方,导函数等求出最值,求出取值范围,特别注意直线斜率存在和不存在的情况,需要分类讨论.21、(1)与半径相等,(2)证明见解析【解析】(1)依据椭圆定义去求点E的轨迹方程事半功倍;(2)直线MN要分为斜率存在的和不存在的两种情况进行讨论,由设而不求法把条件转化为直线MN过定点的条件即可解决.【小问1详解】圆即为,可得圆心,半径,由,可得,由,可得,即为,即有,则,所以其与半径相等.因为,故E的轨迹为以A,B为焦点的椭圆(不包括左右顶点),且有,,即,,,则点E的轨迹方程为;【小问2详解】当直线MN斜率不存在时,设直线方程为,则,,,,则,∴,此时直线MN的方程为当直线MN斜率存在时,设直线方程为:,与椭圆方程联立:,得,设,,有则将*式代入化简可得:,即,∴,此时直线MN:,恒过定点又直线MN斜率不存在时,直线MN:也过,故直线MN过定点.【点睛】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。22、(1)(2)或【解析】(1)结合已知条件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年小学卫生室工作计划(二篇)
- 2024年小学安全工作常规检查制度(二篇)
- 2024年小学班主任安全工作计划例文(四篇)
- 2024年学校心理咨询室工作计划(二篇)
- 2024年学生会体育部年度工作计划例文(五篇)
- 2023年泌尿系统用药投资申请报告
- 汽车前沿概念:飞行汽车-引领未来低空发展的新引擎(先进制造2024前沿第8期)
- 2024年单位消防安全管理制度范文(二篇)
- 2024年土木工程实习总结常用版(二篇)
- 2024年婚前房产协议参考范本(二篇)
- 个人简历模板(表格式)
- 管理者的角色定位及认知培训
- 国家开放大学《西方经济学(本)》章节测试参考答案
- 第三章 采收及采后商品化处理
- 工业通风除尘课程设计
- 海康威视全数字可视对讲系统设计方案
- 二年级上册数学3.1 统计表初步沪教版课件(共11张PPT)
- 引水罐的设计计算
- nexstar系列天文望远镜用户手册
- 广州地区穗建中验收表格完整
- 机房搬迁方案计划
评论
0/150
提交评论