




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省新课标2025届数学高二上期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,是函数的部分图象,且关于直线对称,则()A. B.C. D.2.已知椭圆的左焦点是,右焦点是,点P在椭圆上,如果线段的中点在y轴上,那么()A.3:5 B.3:4C.5:3 D.4:33.已知为等比数列的前n项和,,,则()A.30 B.C. D.30或4.如图,在平行六面体(底面为平行四边形的四棱柱)中,E为延长线上一点,,则=()A. B.C. D.5.绕着它的一边旋转一周得到的几何体可能是()A.圆台 B.圆台或两个圆锥的组合体C.圆锥或两个圆锥的组合体 D.圆柱6.七巧板是中国古代劳动人民发明的一种传统智力玩具,它由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为()A. B.C. D.7.已知事件A,B相互独立,,则()A.0.24 B.0.8C.0.3 D.0.168.已知,则“”是“直线与平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知椭圆的一个焦点坐标为,则的值为()A.1 B.3C.9 D.8110.已知实数x,y满足,则的最大值为()A. B.C.2 D.111.若双曲线的渐近线方程为,则的值为()A.2 B.3C.4 D.612.函数在上的最大值是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,且,则_____________14.已知双曲线的左、右焦点分别为,,O为坐标原点,点M是双曲线左支上的一点,若,,则双曲线的离心率是____________15.已知圆:和圆:,动圆M同时与圆及圆外切,则动圆的圆心M的轨迹方程为______.16.已知集合,集合,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线上任意一点到焦点F最短距离为2,(1)求抛物线C的方程;(2)过焦点F的直线,互相垂直,且与C分别交于A,B,M,N四点,求四边形AMBN面积的最小值18.(12分)如图,已知椭圆:()的左、右焦点分别为、,离心率为.过的直线与椭圆的一个交点为,过垂直于的直线与椭圆的一个交点为,.(1)求椭圆的方程和点的轨迹的方程;(2)若曲线上的动点到直线:的最大距离为,求的值.19.(12分)如图,分别是椭圆C:的左,右焦点,点P在椭圆C上,轴,点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且,.(1)求椭圆C的方程;(2)已知M,N是椭圆C上的两点,若点,,试探究点M,,N是否一定共线?说明理由.20.(12分)椭圆的左右焦点分别为,,焦距为,为原点.椭圆上任意一点到,距离之和为.(1)求椭圆的标准方程;(2)过点的斜率为2的直线交椭圆于、两点,求的面积.21.(12分)已知抛物线C:()的焦点为F,原点O关于点F的对称点为Q,点关于点Q的对称点,也在抛物线C上(1)求p的值;(2)设直线l交抛物线C于不同两点A、B,直线、与抛物线C的另一个交点分别为M、N,,,且,求直线l的横截距的最大值.22.(10分)在①(b-c)cosA=acosC,②sin(B+C)=-1+2sin2,③acosC=b-c,这三个条件中任选一个作为已知条件,然后解答问题在△ABC中,内角A,B,C的对边分别为a,b,c,已知______________(1)求角A的大小;(2)若a=2,且△ABC的面积为2,求b+c
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先根据条件确定为函数的极大值点,得到的值,再根据图像的单调性和导数几何意义得到和的正负即可判断.【详解】根据题意得,为函数部分函数的极大值点,所以,又因为函数在单调递增,由图像可知处切线斜率为锐角,根据导数的几何意义,所以,又因为函数在单调递增,由图像可知处切线斜率为钝角,根据导数的几何意义所以.即.故选:C.2、A【解析】求出椭圆的焦点坐标,再根据点在椭圆上,线段的中点在轴上,求得点坐标,进而计算,从而求解.【详解】由椭圆方程可得:,设点坐标为,线段的中点为,因为线段中点在轴上,所以,即,代入椭圆方程得或,不妨取,则,所以,故选:A.3、A【解析】利用等比数列基本量代换代入,列方程组,即可求解.【详解】由得,则等比数列的公比,则得,令,则即,解得或(舍去),,则故选:A4、A【解析】根据空间向量的加减法运算法则,直接写出向量的表达式,即可得答案.【详解】=,故选:A.5、C【解析】讨论是按直角边旋转还是按斜边旋转【详解】按直角边选择可得下图圆锥:如果按直角边旋转可得下图的两个圆锥的组合体:故选:C6、D【解析】设正方形的边长为,计算出阴影部分区域的面积和正方形区域的面积,然后利用几何概型的概率公式计算出所求事件的概率.【详解】设大正方形的边长为,则面积为,阴影部分由一个大等腰直角三角形和一个梯形组成大等腰直角三角形的面积为,梯形的上底为,下底为,高为,面积为,故所求概率故选:D.7、B【解析】利用事件独立性的概率乘法公式及条件概率公式进行求解.【详解】因为事件A,B相互独立,所以,所以故选:B8、A【解析】首先由两直线平行的充要条件求出参数的取值,再根据充分条件、必要条件的定义判断即可;【详解】因为直线与平行,所以,解得或,所以“”是“直线与平行”的充分不必要条件.故选:A.9、A【解析】根据条件,利用椭圆标准方程中长半轴长a,短半轴长b,半焦距c关系列式计算即得.【详解】由椭圆的一个焦点坐标为,则半焦距c=2,于是得,解得,所以值为1.故选:A10、A【解析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求出的最大值.【详解】作出可行域如图所示,由可知,此直线可用由直线平移得到,求的最大值,即直线的截距最大,当直线过直线的交点时取最大值,即故选:11、A【解析】根据双曲线方程确定焦点位置,再根据渐近线方程为求解.【详解】因为双曲线所以焦点在x轴上,又因为渐近线方程为,所以,所以.故选:A【点睛】本题主要考查双曲线的几何性质,还考查了理解辨析的能力,属于基础题.12、D【解析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可,结合函数的单调性求出的最大值即可【详解】函数的导数令可得,可得上单调递增,在单调递减,函数在上的最大值是故选D【点睛】本题考查了函数的单调性、最值问题,是一道中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由,可得,,,从而利用换底公式及对数的运算性质即可求解.【详解】解:因为,所以,,,又,所以,所以,所以,故答案为:.14、5【解析】根据得出,设,从而利用双曲线的定义可求出,的关系,从而可求出答案.【详解】设双曲线的焦距为,则,因为,所以,因为,不妨设,,由双曲线的定义可得,所以,,由勾股定理可得,,所以,所以双曲线的离心率故答案为:.15、【解析】根据动圆同时与圆及圆外切,即可得到几何关系,再结合双曲线的定义可得动点的轨迹方程.【详解】由题,设动圆的半径为,圆的半径为,圆的半径为,当动圆与圆,圆外切时,,,所以,因为圆心,,即,又根据双曲线的定义,得动点的轨迹为双曲线的上支,其中,,所以,则动圆圆心的轨迹方程是;故答案为:16、##(-1,2]【解析】根据两集合的并集的含义,即可得答案.【详解】因为集合,集合,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)128【解析】(1)设抛物线上任一点为,由可得答案.(2)由题意可知,的斜率k存在且不为0,设出其方程并与抛物线方程联立,得出韦达定理,从而得出弦长的表达式,同理得出弦长的表达式,进而得出四边形AMBN面积的不等式,从而求出其最小值.【小问1详解】设抛物线上任一点为,则,所以当时,,又∵,∴,即所以抛物线C的方程为【小问2详解】设交抛物线C于点,,交抛物线C于点,由题意可知,的斜率k存在且不为0设的方程为由,得,同理可得,,当且仅当时,即时,等号成立∴四边形AMBN面积的最小值为12818、(1)椭圆的方程为,点的轨迹的方程为(2)【解析】(1)由题意可得,求出,再结合,求出,从而可得椭圆的方程,设,则由题意可得,坐标代入化简可得点的轨迹的方程,(2)由题意结合点到直线的距离公式可得,设,将直线方程代入椭圆方程中消去,整理利用根与系数的关系,由,可得,因为,代入化简计算可求得答案【小问1详解】由题意得,解得,则,所以椭圆的方程,设,则由题意可得,所以,所以,所以点轨迹的方程为【小问2详解】由(1)知曲线是以原点为圆心,1为半径的圆,因为曲线上的动点到直线:的最大距离为,所以,得,设,由,得,所以,,因为,所以,所以,所以,因为,所以,所以,,所以,得,得(舍去),或19、(1)(2)不一定共线,理由见解析【解析】(1)由椭圆定义可得a,利用∽△BOA可解;(2)考察轴时的情况,分析可知M,,N不一定共线.【小问1详解】由题意得,,设,,代入椭圆C的方程得,,可得.可得.由,,所以∽△BOA,所以,即,可得.又,,得.所以椭圆C的方程为.【小问2详解】当轴时,,设,,则由已知条件和方程,可得,整理得,,解得或.由于,所以当时,点M,,N共线;所以当时,点M,,N不共线.所以点M,,N不一定共线.20、(1)(2)【解析】(1)根据题意和椭圆的定义可知a,c,再根据,即可求出b,由此即可求出椭圆的方程;(2)求出直线方程,将其与椭圆方程联立,根据弦长公式求出的长度,再根据点到直线的距离公式求出点O到直线AB的距离,再根据面积公式即可求出结果.【小问1详解】由题意可得,,∴,,,所以椭圆的标准方程为.【小问2详解】直线l的方程为,代入椭圆方程得,设,,则,,,∴,又∵点O到直线AB的距离,∴,即△OAB的面积为.21、(1);(2)最大横截距为.【解析】(1)首先写出的坐标,根据对称关系求出的坐标,带入即可求出.(2)设直线l的方程为,带入抛物线方程利用韦达定理,计算出直线l的横截距的表达式从而求出其最大值.【详解】(1)由题知,,故,代入C的方程得,∴;(2)设直线l的方程为,与抛物线C:联立得,由题知,可设方程两根为,,则,,(*)由得,∴,,又点M在抛物线C上,∴,化简得,由题知M,A为不同两点,故,,即,同理可得,∴,将(*)式代入得,即,将其代入解得,∴在时取得最大值,即直线l的最大横截距为.22、(1)(2)【解析】(1)选①:化边为角化简求出cos;选②:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度建筑工地围挡粉刷合同
- 2025年度数据中心冷却系统安装工程挂靠施工协议
- 二零二五年度高科技产品加工保密协议模板
- 2025版电梯门套安装与节能评估合同
- 2025版新能源汽车电池融资租赁合同范本
- 二零二五年度二手家具买卖合同协议书
- 二零二五年度电影拍摄交通保障合作合同
- 2025版建筑吊篮租赁与施工现场垃圾清运服务合同
- 二零二五年度智能绿色建筑项目工程借款合同
- 心理健康课《勇敢》课件
- 1到六年级古诗全部打印
- 火龙罐疗法经典课件
- 无精子症的诊疗策略
- 美罗培南课件
- 初中校本课程-《海洋教育》云雨的故乡教学课件设计
- 护理不良事件实习生
- 59秒管理读书分享
- GB/T 3098.15-2023紧固件机械性能不锈钢螺母
- 英语字贴冀教版小学英语三年级上册单词和重点句型衡水体练习字帖
- 128个常用自然拼读发音规则和1000句生活口语
- 二升三暑期奥数培优(学生教材)
评论
0/150
提交评论