2025届洛阳市重点中学数学高二上期末学业质量监测试题含解析_第1页
2025届洛阳市重点中学数学高二上期末学业质量监测试题含解析_第2页
2025届洛阳市重点中学数学高二上期末学业质量监测试题含解析_第3页
2025届洛阳市重点中学数学高二上期末学业质量监测试题含解析_第4页
2025届洛阳市重点中学数学高二上期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届洛阳市重点中学数学高二上期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线平分圆的周长,过点作圆的一条切线,切点为,则()A.5 B.C.3 D.2.已知定义在R上的函数满足,且有,则的解集为()A B.C. D.3.设,则的一个必要不充分条件为()A. B.C. D.4.过圆外一点引圆的两条切线,则经过两切点的直线方程是A. B.C. D.5.已知直线m经过,两点,则直线m的斜率为()A.-2 B.C. D.26.如图,平行六面体中,与的交点为,设,则选项中与向量相等的是()A. B.C. D.7.若一个正方体的全面积是72,则它的对角线长为()A. B.12C. D.68.等差数列x,,,…的第四项为()A.5 B.6C.7 D.89.过抛物线的焦点的直线交抛物线于两点,点是原点,若;则的面积为()A. B.C. D.10.若数列满足,则()A.2 B.6C.12 D.2011.已知,满足,则的最小值为()A.5 B.-3C.-5 D.-912.与向量平行,且经过点的直线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设有下列命题:①当,时,不等式恒成立;②函数在上的最小值为2;③函数在上的最大值为;④若,,且,则的最小值为其中真命题为________________.(填写所有真命题的序号)14.已知直线与平行,则实数的值为_____________.15.某教师组织本班学生开展课外实地测量活动,如图是要测山高.现选择点A和另一座山顶点C作为测量观测点,从A测得点M的仰角,点C的仰角,测得,,已知另一座山高米,则山高_______米.16.若球的大圆的面积为,则该球的表面积为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)篮天技校为了了解车床班学生的操作能力,设计了一个考查方案;每个考生从道备选题中一次性随机抽取道题,按照题目要求独立完成零件加工,规定:至少正确加工完成其中个零件方可通过.道备选题中,考生甲有个零件能正确加工完成,个零件不能完成;考生乙每个零件正确完成的概率都是,且每个零件正确加工完成与否互不影响(1)分别求甲、乙两位考生正确加工完成零件数的概率分布列(列出分布列表);(2)试从甲、乙两位考生正确加工完成零件数的数学期望及两人通过考查的概率分析比较两位考生的操作能力18.(12分)已知数列中,,.(1)求证:数列是等差数列,并求数列的通项公式;(2)求数列的前项和.19.(12分)已知椭圆的离心率是,且过点.(1)求椭圆的标准方程;(2)若直线与椭圆交于A、B两点,线段的中点为,为坐标原点,且,求面积的最大值.20.(12分)已知椭圆的焦点为,且该椭圆过点(1)求椭圆的标准方程;(2)若椭圆上的点满足,求的值21.(12分)在如图所示的几何体中,四边形是平行四边形,,,,四边形是矩形,且平面平面,,点是线段上的动点(1)证明:;(2)设平面与平面的夹角为,求的最小值22.(10分)已知椭圆:的长轴长是短轴长的倍,且经过点.(1)求的标准方程;(2)的右顶点为,过右焦点的直线与交于不同的两点,,求面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据圆的性质,结合圆的切线的性质进行求解即可.【详解】由,所以该圆的圆心为,半径为,因为直线平分圆的周长,所以圆心在直线上,故,因此,,所以有,所以,故选:B2、A【解析】构造,应用导数及已知条件判断的单调性,而题设不等式等价于即可得解.【详解】设,则,∴在R上单调递增.又,则.∵等价于,即,∴,即所求不等式的解集为.故选:A3、C【解析】利用必要条件和充分条件的定义判断.【详解】A选项:,,,所以是的充分不必要条件,A错误;B选项:,,所以是的非充分非必要条件,B错误;C选项:,,,所以是必要不充分条件,C正确;D选项:,,,所以是的非充分非必要条件,D错误.故选:C.4、A【解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选5、A【解析】根据斜率公式求得正确答案.【详解】直线的斜率为:.故选:A6、B【解析】利用空间向量加减法、数乘的几何意义,结合几何体有,进而可知与向量相等的表达式.【详解】连接,如下图示:,.故选:B7、D【解析】根据全面积得到正方体的棱长,再由勾股定理计算对角线.【详解】设正方体的棱长为,对角线长为,则有,解得,从而,解得.故选:D8、A【解析】根据等差数列的定义求出x,求出公差,即可求出第四项.【详解】由题可知,等差数列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四项为-1+(4-1)×2=5.故选:A.9、C【解析】抛物线焦点为,准线方程为,由得或所以,故答案为C考点:1、抛物线的定义;2、直线与抛物线的位置关系10、D【解析】由已知条件变形可得,然后累乘法可得,即可求出详解】由得,,.故选:D11、D【解析】作出可行域,作出目标函数对应的直线,平移该直线可得最优解【详解】解:作出可行域,如图内部(含边界),作直线,在中,,当直线向下平移时,增大,因此把直线向上平移,当直线过点时,故选:D12、A【解析】利用点斜式求得直线方程.【详解】依题意可知,所求直线的斜率为,所以所求直线方程为,即.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、①③④【解析】①直接利用基本不等式判断即可;②直接利用基本不等式以及等号成立的条件判断即可;③分子、分母同除,利用基本不等式即可判断;④设,,利用指、对互化以及基本不等式即可判断.【详解】由于,,故恒成立,当且仅当时取等号,所以①正确;,当且仅当,即时取等号,由于,所以②不正确;因为,所以,当且仅当时取等号,而,即函数的最大值为,所以③正确;设,,则,,,,,所以,当且仅当,时取等号,故的最小值为,所以④正确.故答案为:①③④【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14、或【解析】根据平行线的性质进行求解即可.【详解】因为直线与平行,所以有:或,故答案为:或15、【解析】利用正弦定理可求出各个三角形的边长,进而求出山高.【详解】解:在中,,,,可得在中,,所以由正弦定理可得:即,得在直角中,所以故答案为:.16、【解析】设球的半径为,则球的大圆的半径为,根据圆的面积公式列方程求出,再由球的表面积公式即可求解.【详解】设球的半径为,则球的大圆的半径为,所以球的大圆的面积为,可得,所以该球的表面积为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)分布列见解析(2)甲的试验操作能力较强,理由见解析【解析】(1)设考生甲、乙正确加工完成零件的个数分别为、,则的可能取值有、、,的可能取值有、、、,且,计算出两个随机变量在不同取值下的概率,可得出这两个随机变量的概率分布列;(2)计算出、、、的值,比较、的大小,以及、的大小,由此可得出结论.【小问1详解】解:设考生甲、乙正确加工完成零件的个数分别为、,则的可能取值有、、,的可能取值有、、、,且,,,,所以,考生甲正确加工完成零件数的概率分布列如下表所示:,,,,所以,考生乙正确加工完成零件数的概率分布列如下表所示:【小问2详解】解:,,,,所以,,从做对题的数学期望分析,两人水平相当;从通过考查的概率分析,甲通过的可能性大,因此可以判断甲的试验操作能力较强.18、(1)证明见解析,(2)【解析】(1)由,取倒数得到,再利用等差数列的定义求解;(2)由(1)得到,利用错位相减法求解.【小问1详解】证明:由,以及,显然,所以,即,所以数列是首项为,公差为的等差数列,所以,所以;【小问2详解】由(1)可得,,所以数列的前项和①所以②则由②-①可得:,所以数列的前项和.19、(1);(2)2.【解析】(1)根据已知条件列出关于a、b、c的方程组即可求得椭圆标准方程;(2)直线l和x轴垂直时,根据已知条件求出此时△AOB面积;直线l和x轴不垂直时,设直线方程为点斜式y=kx+t,代入椭圆方程得二次方程,结合韦达定理和弦长得k和t关系,表示出△AOB的面积,结合基本不等式即可求解三角形面积最值.【小问1详解】由题知,解得,∴椭圆的标准方程为.【小问2详解】当轴时,位于轴上,且,由可得,此时;当不垂直轴时,设直线的方程为,与椭圆交于,,由,得.得,,从而已知,可得.∵.设到直线的距离为,则,结合化简得此时的面积最大,最大值为2.当且仅当即时取等号,综上,的面积的最大值为2.20、(1)(2)【解析】(1)利用两点间距离公式求得P到椭圆的左右焦点的距离,然后根据椭圆的定义得到a的值,结合c的值,利用a,b,c的平方关系求得的值,再结合焦点位置,写出椭圆的标准方程(2)利用向量的数量积,求得点满足的条件,再结合椭圆的方程,解得的值【小问1详解】解:设椭圆的长半轴长为a,短半轴长为b,半焦距为c,因为所以,即,又因为c=2,所以,又因为椭圆的中心在原点,焦点在x轴上,所以该椭圆的标准方程为.【小问2详解】解:因为,所以,即,又,所以,即.21、(1)证明见解析;(2).【解析】(1)要证,只需证平面,只需证(由勾股定理可证),,只需证平面,只需证(由平面平面可证),(由可证),即可证明结论.(2)以为原点,所在直线分别为x轴,y轴,z轴,建立空间直角坐标系写出点与点的坐标由于轴,可设,可得出与的坐标设为平面的法向量,求出法向量.是关于的一个式子,求出的取值范围,即可求出的最小值【小问1详解】在中,,,,所以,所以所以是等腰直角三角形,即因为,所以又因为平面平面,平面平面,,所以平面又平面,所以又因为,EC,平面所以平面又平面,所以,所以在中,,,所以所以又因为,,所以,所以又,,平面所以平面又平面,所以【小问2详解】以为原点,所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系则,因为轴,可设,可求得,设为平面的法向量则令,解得,所以又因为是平面的法向量所以,因为,所以所以当时,取到最小值22、(1);(2)【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论