贵州省黔东南州锦屏县民族中学2025届数学高二上期末质量检测模拟试题含解析_第1页
贵州省黔东南州锦屏县民族中学2025届数学高二上期末质量检测模拟试题含解析_第2页
贵州省黔东南州锦屏县民族中学2025届数学高二上期末质量检测模拟试题含解析_第3页
贵州省黔东南州锦屏县民族中学2025届数学高二上期末质量检测模拟试题含解析_第4页
贵州省黔东南州锦屏县民族中学2025届数学高二上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省黔东南州锦屏县民族中学2025届数学高二上期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差不变;②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;③回归直线就是散点图中经过样本数据点最多的那条直线;④如果两个变量的线性相关程度越高,则线性相关系数就越接近于;其中错误说法的个数是()A. B.C. D.2.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,则()A.α∥β且∥α B.α⊥β且⊥βC.α与β相交,且交线垂直于 D.α与β相交,且交线平行于3.若抛物线的焦点与椭圆的下焦点重合,则m的值为()A.4 B.2C. D.4.直线的斜率是方程的两根,则与的位置关系是()A.平行 B.重合C.相交但不垂直 D.垂直5.若某群体中成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.6.已知a,b是互不重合直线,,是互不重合的平面,下列命题正确的是()A.若,,则B.若,,,则C.若,,则D.若,,,则7.已知直线方程为,则其倾斜角为()A.30° B.60°C.120° D.150°8.已知函数,则曲线在点处的切线方程为()A. B.C. D.9.已知是虚数单位,若复数满足,则()A. B.2C. D.410.下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则11.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg12.在直角坐标系中,直线的倾斜角是A.30° B.60°C.120° D.150°二、填空题:本题共4小题,每小题5分,共20分。13.设空间向量,且,则___________.14.如图,棱长为1的正方体,点沿正方形按的方向作匀速运动,点沿正方形按的方向以同样的速度作匀速运动,且点分别从点A与点同时出发,则的中点的轨迹所围成图形的面积大小是________.15.已知,是椭圆:的两个焦点,点在上,则的最大值为________16.函数的导函数___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线经过点且斜率为(1)求直线的一般式方程(2)求与直线平行,且过点的直线的一般式方程(3)求与直线垂直,且过点的直线的一般式方程18.(12分)已知公比的等比数列和等差数列满足:,,其中,且是和的等比中项(1)求数列与的通项公式;(2)记数列的前项和为,若当时,等式恒成立,求实数的取值范围19.(12分)如图,四边形是矩形,平面平面,为中点,,,(1)证明:平面平面;(2)求二面角的余弦值20.(12分)已知抛物线的焦点为F,直线l交抛物线于不同的A、B两点.(1)若直线l的方程为,求线段AB的长;(2)若直线l经过点P(-1,0),点A关于x轴的对称点为A',求证:A'、F、B三点共线.21.(12分)某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识,组织方从参加活动的群众中随机抽取120名群众,按年龄将这120名群众分成5组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)求图中m的值;(2)估算这120名群众的年龄的中位数(结果精确到0.1);(3)已知第1组群众中男性有2人,组织方要从第1组中随机抽取2名群众组成维权志愿者服务队,求恰有一名女性的概率.22.(10分)已知椭圆的焦点与双曲线的焦点相同,且D的离心率为.(1)求C与D的方程;(2)若,直线与C交于A,B两点,且直线PA,PB的斜率都存在.①求m的取值范围.②试问这直线PA,PB的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据统计的概念逐一判断即可.【详解】对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,①正确;对于②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;故②正确;对于③,线性回归方程必过样本中心点,回归直线不一定就是散点图中经过样本数据点最多的那条直线,也可能不过任何一个点;③不正确;对于④,如果两个变量的线性相关程度越高,则线性相关系数就越接近于,不正确,应为相关系数的绝对值就越接近于;综上,其中错误的个数是;故选:C.2、D【解析】由平面,直线满足,且,所以,又平面,,所以,由直线为异面直线,且平面平面,则与相交,否则,若则推出,与异面矛盾,所以相交,且交线平行于,故选D考点:平面与平面的位置关系,平面的基本性质及其推论3、D【解析】求出椭圆的下焦点,即抛物线的焦点,即可得解.【详解】解:椭圆的下焦点为,即为抛物线焦点,∴,∴.故选:D.4、C【解析】由韦达定理可得方程的两根之积为,从而可知直线、的斜率之积为,进而可判断两直线的位置关系【详解】设方程的两根为、,则直线、的斜率,故与相交但不垂直故选:C5、A【解析】利用对立事件的概率公式可求得所求事件的概率.【详解】由对立事件概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.6、B【解析】根据线线,线面,面面位置关系的判定方法即可逐项判断.【详解】A:若,,则或a,故A错误;B:若,,则a⊥β,又,则a⊥b,故B正确;C:若,,则或α与β相交,故C错误;D:若,,,则不能判断α与β是否垂直,故D错误.故选:B.7、D【解析】由直线方程可得斜率,根据斜率与倾斜角的关系即可求倾斜角大小.【详解】由题设,直线斜率,若直线的倾斜角为,则,∵,∴.故选:D8、A【解析】求出函数的导函数,再求出,然后利用导数的几何意义求解作答.【详解】函数,求导得:,则,而,于是得:,即,所以曲线在点处的切线方程为.故选:A9、C【解析】先求出,然后根据复数的模求解即可【详解】,,则,故选:C10、D【解析】通过举反列即可得ABC错误,利用不等式性质可判断D【详解】A.当时,,但,故A错;B.当时,,故B错;C.当时,,但,故C错;D.若,则,D正确故选:D11、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误故选D12、D【解析】根据直线方程得到直线的斜率后可得直线的倾斜角.【详解】设直线的倾斜角为,则,因,故,故选D.【点睛】直线的斜率与倾斜角的关系是:,当时,直线的斜率不存在,注意倾斜角的范围.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】根据,由求解.【详解】因为向量,且,所以,即,解得.故答案为:114、##【解析】画出符合要求的图形,观察得到轨迹是菱形,并进行充分性和必要性两方面的证明,并求解出轨迹图形的面积.【详解】如图,分别是正方形ABCD,,的中心,下面进行证明:菱形EFGC的周界即为动线段PQ的中点H的轨迹,首先证明:如果点H是动线段PQ的中点,那么点H必在菱形EFGC的周界上,分两种情况证明:(1)P,Q分别在某一个定角的两边上,不失一般性,设P从B到C,而Q同时从到C,由于速度相同,所以PQ必平行于,故PQ的中点H必在上;(2)P,Q分别在两条异面直线上,不失一般性,设P从A到B,同时Q从到,由于速度相同,则,由于H为PQ的中点,连接并延长,交底面ABCD于点T,连接PT,则平面与平面交线是PT,∵∥平面,∴∥PT,∴,而,∥BC,∴是等腰直角三角形,,从而T在AC上,可以证明FH∥AC,GH∥AC,DG∥AC,基于平行线的唯一性,显然H在DG上,综合(1)(2)可证明,线段PQ的中点一定在菱形EFGC的周界上;下面证明:如果点H在菱形EFGC的周界上,则点H必定是符合条件的线段的中点.也分两种情况进行证明:(1)H在CG或CE上,过点H作PQ∥(或BD),而与BC及(或CD及BC)分别相交于P和Q,由相似的性质可得:PH=QH,即H是PQ的中点,同时可证:BP=(或BQ=DP),因此P、Q符合题设条件(2)H在EF或FG上,不失一般性,设H在FG上,连接并延长,交平面AC于点T,显然T在AC上,过T作TP∥CB于点P,则TP∥,在平面上,连接PH并延长,交于点Q,在三角形中,G是的中点,∥AC,则H是的中点,于是,从而有,又因为TP∥CB,,所以,从而,因此P,Q符合题设条件.由(1)(2),如果H是菱形EFGC周界上的任一点,则H必是符合题设条件的动线段PQ的中点,证毕.因为四边形为菱形,其中,所以边长为且,为等边三角形,,所以面积.故答案为:【点睛】对于立体几何轨迹问题,要画出图形,并要善于观察,利用所学的立体几何方面的知识,大胆猜测,小心验证,对于多种情况的,要画出相应的图形,注意分类讨论.15、9【解析】根据椭圆的定义可得,结合基本不等式即可求得的最大值.【详解】∵在椭圆上∴∴根据基本不等式可得,即,当且仅当时取等号.故答案为:9.16、【解析】利用导函数的乘法公式和复合函数求导法则进行求解【详解】故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)先写点斜式方程,再化一般式,(2)根据平行设一般式,再代点坐标得结果,(3)根据垂直设一般式,再代点坐标得结果.【详解】(1)(2)设所求方程为因为过点,所以(3)设所求方程为因为过点,所以【点睛】本题考查直线方程,考查基本分析求解能力,属基础题.18、(1),;(2).【解析】(1)根据已知条件可得出关于方程,解出的值,可求得的值,即可得出数列与的通项公式;(2)求得,利用错位相减法可求得,分析可知数列为单调递增数列,对分奇数和偶数两种情况讨论,结合参变量分离法可得出实数的取值范围.【详解】(1)设等差数列的公差为,因为,,,且是和的等比中项,所以,整理可得,解得或.若,则,可得,不合乎题意;若,则,可得,合乎题意.所以,;;(2)因为,①,②②①得因为,即对恒成立,所以当且,,故数列为单调递增数列,当为偶数时,,所以;当为奇数时,,所以,即.综上可得19、(1)证明见解析;(2)【解析】(1)利用面面垂直的性质,证得平面,进而可得,平面即可得证;(2)在平面ABC内过点A作Ax⊥AB,以A为原点建立空间直角坐标系,借助空间向量而得解.【详解】(1)因为,为中点,所以,因为是矩形,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以,又,平面,,所以平面,又平面,所以平面平面;(2)在平面ABC内过点A作Ax⊥AB,由(1)知,平面,故以点A为坐标原点,分别以,,的方向为轴,轴,轴的正方向,建立空间直角坐标系,如图:则,,,,,则,所以,,,,由(1)知,为平面的一个法向量,设平面的法向量为,则,即,令,则,,所以,所以,因为二面角为锐角,则二面角的余弦值为.【点睛】思路点睛:二面角大小求解时要注意结合实际图形判断所求角是锐角还是钝角20、(1)8;(2)证明见解析.【解析】(1)联立直线与抛物线方程,应用韦达定理及弦长公式求线段AB的长;(2)设为,联立抛物线由韦达定理可得,,应用两点式判断是否为0即可证结论.【小问1详解】由题设,联立直线与抛物线方程可得,则,,∴,,所以.【小问2详解】由题设,,又直线l经过点P(-1,0),此时直线斜率必存在且不为0,可设为,联立抛物线得:,则,,又,故,而,所以,所以A'、F、B三点共线.21、(1)(2)(3)【解析】(1)由频率分布直方图中所有频率和为1求出;(2)求出概率对应的值即为中位数;(3)求出第一组中总人数,得女性人数,然后求得恰有一名女性的方法数和总的方法数后可得概率【小问1详解】解:因为频率分布直方图的小矩形面积和为1,所以,解得,【小问2详解】解:前2组频率和为,前3组频率和为,所以中位数在第3组,设中位数为,则,;【小问3详解】解:第一组总人数为,男性人2人,则女性有4人,不妨记两名男性为,四名女性为,则随机抽取2名群众的可能为,,,共15种方案,其中恰有一名女性的方法数,共8种,所以第1组中随机抽取2名群众组成维权志愿者服务队,求恰有一名女性的概率为22、(1)C:;D:;(2)①且;②见解析.【解析】(1)根据D的离心率为,求出从而求出双曲线的焦点,再由椭圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论