




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市南开中学2025届高一数学第一学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知α,β是两个不同的平面,给出下列四个条件:①存在一条直线a,使得a⊥α,a⊥β;②存在两条平行直线a,b,使得a//α,a//β,b//α,b//β;③存在两条异面直线a,b,使得a⊂α,b⊂β,a//β,b//α;④存在一个平面γ,使得γ⊥α,γ⊥β其中可以推出α//β的条件个数是A.1 B.2C.3 D.42.下列函数中,与函数是同一函数的是()A. B.C. D.3.函数的图像必经过点A.(0,2) B.(4,3)C.(4,2) D.(2,3)4.定义域在R上的函数是奇函数且,当时,,则的值为()A. B.C D.5.函数y=sin2x,xR的最小正周期是()A.3π B.πC.2 D.16.已知,则下列选项中正确的是()A. B.C. D.7.已知,则的最小值为().A.9 B.C.5 D.8.过点,且圆心在直线上的圆的方程是()A. B.C. D.9.在正方体中,为棱的中点,则A. B.C. D.10.“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.化简:________.12.调查某高中1000名学生的肥胖情况,得到的数据如表:偏瘦正常肥胖女生人数88175y男生人数126211z若,则肥胖学生中男生不少于女生的概率为_________13.命题“,”的否定形式为__________________________.14.设平行于轴的直线分别与函数和的图像相交于点,,若在函数的图像上存在点,使得为等边三角形,则点的纵坐标为_________.15.设函数,若函数满足对,都有,则实数的取值范围是_______.16.已知函数,若关于x的方程有两个不同的实根,则实数m的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,是平面四边形的对角线,,,且.现在沿所在的直线把折起来,使平面平面,如图.(1)求证:平面;(2)求点到平面的距离.18.设函数(1)设,求函数的最大值和最小值;(2)设函数为偶函数,求的值,并求函数的单调增区间19.正数x,y满足.(1)求xy的最小值;(2)求x+2y的最小值20.设全集为,集合,(1)分别求,;(2)已知,若,求实数的取值范围构成的集合21.某商品上市天内每件的销售价格(元)与时间(天)函数的关系是,该商品的日销售量(件)与时间(天)的函数关系是.(1)求该商品上市第天的日销售金额;(2)求这个商品的日销售金额的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】当α,β不平行时,不存在直线a与α,β都垂直,∴a⊥α,a⊥β⇒α∥β,故1正确;存在两条平行直线a,b,a∥α,b∥β,a∥β,b∥α,则α,β相交或平行,所以2不正确;存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α,由面面平行的判定定理得α∥β,故3正确;存在一个平面γ,使得γ⊥α,γ⊥β,则α,β相交或平行,所以4不正确;故选B2、C【解析】确定定义域相同,对应法则相同即可判断【详解】解:定义域为,A中定义域为,定义域不同,错误;B中化简为,对应关系不同,错误;C中定义域为,化简为,正确;D中定义域为,定义域不同,错误;故选:C3、B【解析】根据指数型函数的性质,即可确定其定点.【详解】令得,所以,因此函数过点(4,3).故选B【点睛】本题主要考查函数恒过定点的问题,熟记指数函数的性质即可,属于基础题型.4、A【解析】根据函数的奇偶性和周期性进行求解即可.【详解】因为,所以函数的周期为,因为函数是奇函数,当时,,所以,故选:A5、B【解析】根据解析式可直接求出最小正周期.【详解】函数的最小正周期为.故选:B.6、A【解析】计算的取值范围,比较范围即可.【详解】∴,,.∴.故选:A.7、B【解析】首先将所给的不等式进行恒等变形,然后结合均值不等式即可求得其最小值,注意等号成立的条件.【详解】.,且,,当且仅当,即时,取得最小值2.的最小值为.故选B.【点睛】本题主要考查基本不等式求最值的方法,代数式的变形技巧,属于中等题.8、B【解析】由题设得的中垂线方程为,其与交点即为所求圆心,并应用两点距离公式求半径,写出圆的方程即可.【详解】由题设,的中点坐标为,且,∴的中垂线方程为,联立,∴,可得,即圆心为,而,∴圆的方程是.故选:B9、C【解析】画出图形,结合图形根据空间中的垂直的判定对给出的四个选项分别进行分析、判断后可得正确的结论【详解】画出正方体,如图所示对于选项A,连,若,又,所以平面,所以可得,显然不成立,所以A不正确对于选项B,连,若,又,所以平面,故得,显然不成立,所以B不正确对于选项C,连,则.连,则得,所以平面,从而得,所以.所以C正确对于选项D,连,若,又,所以平面,故得,显然不成立,所以D不正确故选C【名师点睛】本题考查线线垂直的判定,解题的关键是画出图形,然后结合图形并利用排除法求解,考查数形结合和判断能力,属于基础题10、A【解析】分别讨论充分性与必要性,可得出答案.详解】由题意,,显然可以推出,即充分性成立,而不能推出,即必要性不成立.故“”是“”的充分而不必要条件.故选:A.【点睛】本题考查充分不必要条件,考查不等式的性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、-1【解析】原式)(.故答案为【点睛】本题的关键点有:先切化弦,再通分;利用辅助角公式化简;同角互化.12、【解析】先求得,然后利用列举法求得正确答案.【详解】依题意,依题意,记,则所有可能取值为,,,共种,其中肥胖学生中男生不少于女生的为,,,共种,故所求的概率为.故答案为:13、##【解析】根据全称量词命题的否定直接得出结果.【详解】命题“”的否定为:,故答案为:14、【解析】设直线的方程为,求得点,坐标,得到,取的中点,连接,根据三角形为等边三角形,表示出点坐标,根据点在函数的图象上,得到关于的方程,求出,进而可得点的纵坐标.【详解】设直线的方程为,由,得,所以点,由,得,所以点,从而,如图,取的中点,连接,因为为等边三角形,则,所以,,则点,因为点在函数的图象上,则,解得,所以点的纵坐标为.故答案为:.【点睛】关键点点睛:求解本题的关键在于先由同一参数表示出点坐标,再代入求解;本题中,先设直线,分别求出,坐标,得到等边三角形的边长,由此用表示出点坐标,即可求解.15、【解析】首先根据题意可得出函数在上单调递增;然后根据分段函数单调性的判断方法,同时结合二次函数的单调性即可求出答案.【详解】因为函数满足对,都有,所以函数在上单调递增.当时,,此时满足在上单调递增,且;当时,,其对称轴为,当时,上单调递增,所以要满足题意,需,即;当时,在上单调递增,所以要满足题意,需,即;当时,单调递增,且满足,所以满足题意.综上知,实数的取值范围是.故答案为:.16、【解析】由题意在同一个坐标系中作出两个函数的图象,图象交点的个数即为方程根的个数,由图象可得答案【详解】解:由题意作出函数的图象,关于x的方程有两个不同的实根等价于函数与有两个不同的公共点,由图象可知当时,满足题意,故答案为【点睛】本题考查方程根的个数,数形结合是解决问题的关键,属基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】(1)由平面平面,平面平面,且平面,且,根据线面垂直的判定定理可得平面;(2)取的中点,连.由,可得,又平面,所以,又,所以平面,因此就是点到平面的距离,在中,,,所以.试题解析:(1)证明:因为平面平面平面平面,平面,且,所以平面(2)取的中点,连.因为,所以,又平面,所以,又,所以平面,所以就是点到平面的距离,在中,,,所以.所以是点到平面的距离是.【方法点晴】本题主要考查、线面垂直的判定定理及面面垂直的性质定理,属于中档题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.18、(1),;(2),【解析】(1)化简f(x)解析式,利用正弦函数的图像特性即可求其最大值和最小值;(2)根据正弦型函数为偶函数可知,,据此即可求出,再根据正弦函数单调性即可求g(x)的单调增区间.【小问1详解】,∵,,∴,∴函数最大值为,最小值为【小问2详解】,∵该函数为偶函数,∴,得,又∵,∴k取0,,∴,令,解得,从而得到其增区间为19、(1)36;(2)【解析】(1)由基本不等式可得,再求解即可;(2)由,再求解即可.【详解】解:(1)由得xy≥36,当且仅当,即时取等号,故xy的最小值为36.(2)由题意可得,当且仅当,即时取等号,故x+2y的最小值为.【点睛】本题考查了基本不等式的应用,重点考查了拼凑法构造基本不等式,属中档题.20、(1),或或;(2)【解析】(1)解一元二次不等式求得集合,由交集、并集和补集的概念计算可得结果;(2)根据集合的包含关系可构造不等式组求得结果.【详解】(1),则或,,或或;(2),,,解得:,则实数的取值范
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025商业写字楼租赁合同范本
- 《城市旅游发展规划》课件
- 《后赤壁赋·苏轼》课件
- 2025原油采购合同范本
- 2025版物业管理委托合同范本
- 2025物业装修合同模板
- 《澳大利亚的自然资源优势》课件
- 《工程概况简要介绍》课件
- 个人果园承包合同样本
- 家装业务培训:全链路技能提升与行业趋势
- 2024-2025学年人教版七年级(下)期中数学试卷(考试范围:第7~9章) (含解析)
- 安全生产“反三违”学习培训
- 网球裁判考试试题及答案
- 能源储备体系建设-深度研究
- 国家义务教育质量监测八年级美术样卷
- 2025年河南轻工职业学院单招职业适应性考试题库及答案1套
- 2025年初中团员考试试题及答案
- 2025年广东省中考模拟英语试卷(二)(原卷版+解析版)
- 2025年陕西省公民科学素质大赛考试题(附答案)
- 《DeepSeek入门宝典》第4册·个人使用篇
- 2024年04月徽商银行北京分行2024年招考对公客户经理笔试历年参考题库附带答案详解
评论
0/150
提交评论