版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE第八章8.68.6.3第2课时A组·素养自测一、选择题1.如图所示,对于面面垂直的性质定理的符号叙述正确的是(D)A.α⊥β,α∩β=l,b⊥l⇒b⊥βB.α⊥β,α∩β=l,b⊂α⇒b⊥βC.α⊥β,b⊂α,b⊥l⇒b⊥βD.α⊥β,α∩β=l,b⊂α,b⊥l⇒b⊥β[解析]依据面面垂直的性质定理知,D正确.2.如图所示,在长方体ABCD-A1B1C1D1的棱AB上任取一点E,作EF⊥A1B1于F,则EF与平面A1B1C1D1的关系是(A.平行B.EF⊂平面A1B1C1DC.相交但不垂直D.相交且垂直[解析]由于长方体中平面ABB1A1⊥平面ABCD,所以依据面面垂直的性质定理可知,EF⊥平面A1B1C1D13.如图所示,三棱锥P-ABC中,平面ABC⊥平面PAB,PA=PB,AD=DB,则(B)A.PD⊂平面ABCB.PD⊥平面ABCC.PD与平面ABC相交但不垂直D.PD∥平面ABC[解析]∵PA=PB,AD=DB,∴PD⊥AB.又∵平面ABC⊥平面PAB,PD⊂平面PAB,平面ABC∩平面PAB=AB,∴PD⊥平面ABC.4.已知直线m,n和平面α,β,若α⊥β,α∩β=m,n⊂α,要使n⊥β,则应增加的条件是(B)A.m∥n B.n⊥mC.n∥α D.n⊥α[解析]由面面垂直的性质定理知,要使n⊥β,应有n与交线m垂直,∴应增加条件n⊥m.5.(多选)如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论错误的是(ABC)A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC[解析]由平面图形易知∠BDC=90°.∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,且CD⊥BD,∴CD⊥平面ABD,∴CD⊥AB.又AB⊥AD,CD∩AD=D,∴AB⊥平面ADC.又AB⊂平面ABC,∴平面ADC⊥平面ABC.二、填空题6.平面α⊥平面β,α∩β=l,n⊂β,n⊥l,直线m⊥α,则直线m与n的位置关系是__平行__.[解析]因为α⊥β,α∩β=l,n⊂β,n⊥l,所以n⊥α.又m⊥α,所以m∥n.7.如图,在三棱锥P-ABC内,侧面PAC⊥底面ABC,且∠PAC=90°,PA=1,AB=2,则PB=__eq\r(5)__.[解析]∵侧面PAC⊥底面ABC,交线为AC,∠PAC=90°(即PA⊥AC),∴PA⊥平面ABC,又AB⊂平面ABC,∴PA⊥AB,∴PB=eq\r(PA2+AB2)=eq\r(1+4)=eq\r(5).8.如图,在三棱锥C-ABD内,平面ABC⊥平面ABD,∠ACB=90°,CA=CB,△ABD是正三角形,O为AB中点,则图中直角三角形的个数为__6__.[解析]∵CA=CB,O为AB的中点,∴CO⊥AB.又平面ABC⊥平面ABD,交线为AB,∴CO⊥平面ABD.∵OD⊂平面ABD,∴CO⊥OD,∴△COD为直角三角形.∴图中的直角三角形有△AOC,△COB,△ABC,△AOD,△BOD,△COD共6个.三、解答题9.如图,在三棱锥P-ABC中,已知△ABC是等腰直角三角形,∠ABC=90°,△PAC是直角三角形,∠PAC=90°,∠ACP=30°,平面PAC⊥平面ABC.求证:平面PAB⊥平面PBC.[证明]∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PA⊥AC,∴PA⊥平面ABC.又BC⊂平面ABC,∴PA⊥BC.又∵AB⊥BC,AB∩PA=A,AB⊂平面PAB,PA⊂平面PAB,∴BC⊥平面PAB.又BC⊂平面PBC,∴平面PAB⊥平面PBC.10.(2024·北京文,18)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面PAB⊥平面PCD;(3)求证:EF∥平面PCD.[解析](1)∵PA=PD,且E为AD的中点,∴PE⊥AD.∵底面ABCD为矩形,∴BC∥AD,∴PE⊥BC.(2)∵底面ABCD为矩形,∴AB⊥AD.∵平面PAD⊥平面ABCD,∴AB⊥平面PAD.∴AB⊥PD.又PA⊥PD,AB∩PA=A∵PD⊥平面PAB,PD⊂平面PCD∴平面PAB⊥平面PCD.(3)如图,取PC中点G,连接FG,GD.∵F,G分别为PB和PC的中点,∴FG∥BC,且FG=eq\f(1,2)BC.∵四边形ABCD为矩形,且E为AD的中点,∴ED∥BC,DE=eq\f(1,2)BC,∴ED∥FG,且ED=FG,∴四边形EFGD为平行四边形,∴EF∥GD.又EF⊄平面PCD,GD⊂平面PCD,∴EF∥平面PCD.B组·素养提升一、选择题1.如图所示,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则点C1在底面ABC上的射影H必在(AA.直线AB上B.直线BC上C.直线AC上D.△ABC内部[解析]连接AC1.∠BAC=90°,即AC⊥AB,又AC⊥BC1,AB∩BC1=B,所以AC⊥平面ABC1.又AC⊂平面ABC,于是平面ABC1⊥平面ABC,且AB为交线,因此,点C1在平面ABC上的射影必在直线AB上,故选A.2.在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC,AD=CD,则BD与CCA.平行 B.共面C.垂直 D.不垂直[解析]如图所示,在四边形ABCD中,∵AB=BC,AD=CD.∴BD⊥AC.∵平面AA1C1C⊥平面ABCD,平面AA1C1C∩平面ABCD=AC,BD⊂平面ABCD,∴BD⊥平面AA1C1C.又CC1⊂平面AA3.如图,点P为四边形ABCD外一点,平面PAD⊥平面ABCD,PA=PD,E为AD的中点,则下列结论不肯定成立的是(D)A.PE⊥ACB.PE⊥BCC.平面PBE⊥平面ABCDD.平面PBE⊥平面PAD[解析]因为PA=PD,E为AD的中点,所以PE⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PE⊥平面ABCD,所以PE⊥AC,PE⊥BC,所以A、B成立.又PE⊂平面PBE,所以平面PBE⊥平面ABCD,所以C成立.若平面PBE⊥平面PAD,则AD⊥平面PBE,必有AD⊥BE,此关系不肯定成立,故选D.4.如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为eq\f(π,4)和eq\f(π,6).过A、B分别作两平面交线的垂线,垂足为A′、B′,则AB︰A′B′等于(A)A.2︰1 B.3︰1C.3︰2 D.4︰3[解析]由已知条件可知∠BAB′=eq\f(π,4),∠ABA′=eq\f(π,6),设AB=2a,则BB′=2asineq\f(π,4)=eq\r(2)a,A′B=2acoseq\f(π,6)=eq\r(3)a,∴在Rt△BB′A′中,得A′B′=a,∴AB︰A′B′=2︰1.二、填空题5.如图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.若CD=2,平面ABCD⊥平面DCEF,则线段MN的长等于__eq\r(6)__.[解析]如图,取CD的中点G,连接MG,NG.因为ABCD,DCEF为正方形,且边长为2,所以MG⊥CD,MG=2,NG=eq\r(2).因为平面ABCD⊥平面DCEF,平面ABCD∩平面DCEF=CD,MG⊂平面ABCD,所以MG⊥平面DCEF,又NG⊂平面DCEF,所以MG⊥NG,所以MN=eq\r(MG2+NG2)=eq\r(6).6.如图,若边长为4和3与边长为4和2的两个矩形所在的平面相互垂直,则cosα︰cosβ=__eq\r(5)︰2__.[解析]由题意,两个矩形的对角线长分别为5,2eq\r(5),所以cosα=eq\f(5,\r(25+4))=eq\f(5,\r(29)),cosβ=eq\f(2\r(5),\r(29)),所以cosα∶cosβ=eq\r(5)︰2.三、解答题7.如图所示,平面α⊥平面β,在α与β的交线l上取线段AB=4cm,AC,BD分别在平面α和平面β内,AC⊥l,BD⊥l,AC=3cm,BD=12[解析]∵AC⊥l,AC=3cm,AB=∴BC=5∵BD⊥l,α∩β=l,α⊥β,BD⊂β,∴BD⊥α.又BC⊂α,∴BD⊥BC.在Rt△BDC中,DC=eq\r(BD2+BC2)=13cm.8.如图,已知四棱锥PABCD的底面为菱形,对角线AC与BD相交于点E,平面PAC垂直于底面ABCD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新房退出合同范例
- 系统外包合同范例
- 2024年度企业并购合同:某互联网企业收购传统制造业公司3篇
- 二零二四年度物业托管合同:办公楼物业全面托管2篇
- 2024年度厦门抗浮锚杆工程变更合同
- 绿化包轻工合同范例
- 洗车租赁合同范例
- 2024年度钢筋采购合同的货物数量与规格2篇
- 简易餐厅转让合同模板
- 社区车位合同范例
- 初三孩子不想读书的心理教育
- PMP培训图解项目管理
- 报废机动车回收拆解企业技术规范
- 企业反腐倡廉培训课件
- 科学科普剧剧本小学
- 我的家乡石家庄元氏宣传介绍课件
- 超市会计核算与财务管理调查报告
- 护理职业生涯规划展示
- 新修订《中小学教师职业道德规范》解读
- Scratch程序设计基础知识考试题库(含答案)
- 2024年上海市奉贤区高三年级上册期末高考与等级考一模政治试卷含答案
评论
0/150
提交评论