




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古包头市、巴彦淖尔市2024届初中数学毕业考试模拟冲刺卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是()A.2011﹣2014年最高温度呈上升趋势B.2014年出现了这6年的最高温度C.2011﹣2015年的温差成下降趋势D.2016年的温差最大2.下列几何体中,其三视图都是全等图形的是()A.圆柱 B.圆锥 C.三棱锥 D.球3.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A. B. C. D.4.下列各组数中,互为相反数的是()A.﹣1与(﹣1)2 B.(﹣1)2与1 C.2与 D.2与|﹣2|5.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为()A. B. C. D.6.一个几何体的三视图如图所示,那么这个几何体是()A. B. C. D.7.如图的几何体中,主视图是中心对称图形的是()A. B. C. D.8.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数()的概率最大.A.3 B.4 C.5 D.69.﹣的相反数是()A.8 B.﹣8 C. D.﹣10.a的倒数是3,则a的值是()A. B.﹣ C.3 D.﹣3二、填空题(共7小题,每小题3分,满分21分)11.如图所示,直线y=x+b交x轴A点,交y轴于B点,交双曲线于P点,连OP,则OP2﹣OA2=__.12.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,AC的长=_____;BD+DC的最小值是_____.13.对于实数,我们用符号表示两数中较小的数,如.因此,________;若,则________.14.分解因式:3a2﹣12=___.15.如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是_____.16.在△ABC中,∠C=90∘,AC=3,BC=4,点D,E,F分别是边AB,AC,BC的中点,则17.因式分解:_________________.三、解答题(共7小题,满分69分)18.(10分)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.19.(5分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.求证:CG是⊙O的切线.求证:AF=CF.若sinG=0.6,CF=4,求GA的长.20.(8分)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.21.(10分)如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.(1)试判断∠CBD与∠CEB是否相等,并证明你的结论;(2)求证:(3)若BC=AB,求tan∠CDF的值.22.(10分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.填空:∠ABC=°,BC=;判断△ABC与△DEF是否相似,并证明你的结论.23.(12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.(1)求证:AC平分∠DAB;(2)若BE=3,CE=3,求图中阴影部分的面积.24.(14分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】
利用折线统计图结合相应数据,分别分析得出符合题意的答案.【详解】A选项:年最高温度呈上升趋势,正确;
B选项:2014年出现了这6年的最高温度,正确;
C选项:年的温差成下降趋势,错误;
D选项:2016年的温差最大,正确;
故选C.【点睛】考查了折线统计图,利用折线统计图获取正确信息是解题关键.2、D【解析】分析:任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.详解:圆柱,圆锥,三棱锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,故选D.点睛:本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.3、C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C4、A【解析】
根据相反数的定义,对每个选项进行判断即可.【详解】解:A、(﹣1)2=1,1与﹣1互为相反数,正确;B、(﹣1)2=1,故错误;C、2与互为倒数,故错误;D、2=|﹣2|,故错误;故选:A.【点睛】本题考查了相反数的定义,解题的关键是掌握相反数的定义.5、A【解析】
过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.【详解】过E作EG∥BC,交AC于G,则∠BCE=∠CEG.∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.故选A.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.6、C【解析】由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.7、C【解析】解:球是主视图是圆,圆是中心对称图形,故选C.8、C【解析】解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}和为2的只有1+1;和为3的有1+2;2+1;和为1的有1+3;2+2;3+1;和为5的有1+1;2+3;3+2;1+1;和为6的有2+1;1+2;和为7的有3+1;1+3;和为8的有1+1.故p(5)最大,故选C.9、C【解析】互为相反数的两个数是指只有符号不同的两个数,所以的相反数是,故选C.10、A【解析】
根据倒数的定义进行解答即可.【详解】∵a的倒数是3,∴3a=1,解得:a=.故选A.【点睛】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】解:∵直线y=x+b与双曲线(x>0)交于点P,设P点的坐标(x,y),∴x﹣y=﹣b,xy=8,而直线y=x+b与x轴交于A点,∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案为1.12、(Ⅰ)AC=4(Ⅱ)4,2.【解析】
(Ⅰ)如图,过B作BE⊥AC于E,根据等腰三角形的性质和解直角三角形即可得到结论;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+DC的值最小,解直角三角形即可得到结论.【详解】解:(Ⅰ)如图,过B作BE⊥AC于E,∵BA=BC=4,∴AE=CE,∵∠A=30°,∴AE=AB=2,∴AC=2AE=4;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+DC的值最小,∵BF=CF=2,∴BD=CD==,∴BD+DC的最小值=2,故答案为:4,2.【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.13、2或-1.【解析】①∵--,∴min{-,-}=-;②∵min{(x−1)2,x2}=1,∴当x>0.5时,(x−1)2=1,∴x−1=±1,∴x−1=1,x−1=−1,解得:x1=2,x2=0(不合题意,舍去),当x⩽0.5时,x2=1,解得:x1=1(不合题意,舍去),x2=−1,14、3(a+2)(a﹣2)【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).15、k>2【解析】
根据二次函数的性质可知,当抛物线开口向上时,二次项系数k﹣2>1.【详解】因为抛物线y=(k﹣2)x2+k的开口向上,所以k﹣2>1,即k>2,故答案为k>2.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.16、6【解析】
首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.【详解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=AC2+B∵点D、E、F分别是边AB、AC、BC的中点,∴DE=12BC,DF=12AC,EF=∴C△DEF=DE+DF+EF=12BC+12AC+12AB=1故答案为:6.【点睛】本题考查了勾股定理和三角形中位线定理.17、【解析】
提公因式法和应用公式法因式分解.【详解】解:.故答案为:【点睛】本题考查因式分解,要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.三、解答题(共7小题,满分69分)18、(1)证明见解析.(2)证明见解析.【解析】分析:(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;(2)连接BC,证△DAC∽△CAB即可得.详解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.19、(1)见解析;(2)见解析;(3)AG=1.【解析】
(1)利用垂径定理、平行的性质,得出OC⊥CG,得证CG是⊙O的切线.(2)利用直径所对圆周角为和垂直的条件得出∠2=∠B,再根据等弧所对的圆周角相等得出∠1=∠B,进而证得∠1=∠2,得证AF=CF.(3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.【详解】(1)证明:连结OC,如图,∵C是劣弧AE的中点,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切线;(2)证明:连结AC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵C是劣弧AE的中点,∴,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:∵CG∥AE,∴∠FAD=∠G,∵sinG=0.6,∴sin∠FAD==0.6,∵∠CDA=90°,AF=CF=4,∴DF=2.4,∴AD=3.2,∴CD=CF+DF=6.4,∵AF∥CG,∴,∴∴DG=,∴AG=DG﹣AD=1.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键.20、(1);(2)【解析】
(1)直接利用求概率公式计算即可;(2)画树状图(或列表格)列出所有等可能结果,根据概率公式即可解答.【详解】(1);(2)方法1:根据题意可画树状图如下:方法2:根据题意可列表格如下:弟弟姐姐ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果有1种:(A,B).∴P(姐姐抽到A佩奇,弟弟抽到B乔治)【点睛】本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解决问题用到概率公式:概率=所求情况数与总情况数之比.21、(1)∠CBD与∠CEB相等,证明见解析;(2)证明见解析;(3)tan∠CDF=.【解析】试题分析:(1)由AB是⊙O的直径,BC切⊙O于点B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,从而可得∠A=∠CBD,结合∠A=∠CEB即可得到∠CBD=∠CEB;(2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,从而可得△EBC∽△BDC,再由相似三角形的性质即可得到结论;(3)设AB=2x,结合BC=AB,AB是直径,可得BC=3x,OB=OD=x,再结合∠ABC=90°,可得OC=x,CD=(-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,从而可得△DCF∽△BCD,由此可得:==,这样即可得到tan∠CDF=tan∠DBF==.试题解析:(1)∠CBD与∠CEB相等,理由如下:∵BC切⊙O于点B,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,(2)∵∠C=∠C,∠CEB=∠CBD,∴∠EBC=∠BDC,∴△EBC∽△BDC,∴;(3)设AB=2x,∵BC=AB,AB是直径,∴BC=3x,OB=OD=x,∵∠ABC=90°,∴OC=x,∴CD=(-1)x,∵AO=DO,∴∠CDF=∠A=∠DBF,∴△DCF∽△BCD,∴==,∵tan∠DBF==,∴tan∠CDF=.点睛:解答本题第3问的要点是:(1)通过证∠CDF=∠A=∠DBF,把求tan∠CDF转化为求tan∠DBF=;(2)通过证△DCF∽△BCD,得到.22、(1)(2)△ABC∽△DEF.【解析】
(1)根据已知条件,结合网格可以求出∠ABC的度数,根据,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC的长;
(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.【详解】(1)故答案为(2)△ABC∽△DEF.证明:∵在4×4的正方形方格中,∴∠ABC=∠DEF.∵∴∴△ABC∽△DEF.【点睛】考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.23、(1)证明见解析;(2)【解析】
(1)连接OC,如图,利用切线的性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 游泳救生员工作知识试题及答案
- 游泳救生员救助技巧精讲的试题及答案
- 2024年游泳救生员考试贯通试题
- 阐述基本概念的试题及答案
- 2024足球裁判员考试准备试题及答案
- 独特见解的体育经纪人考试试题及答案
- 2024年体育经纪人资格考试的关键复习点试题及答案
- 二年级数学有余数的除法(2位数除以1位数)家庭作业试题
- 注意事项 2024篮球裁判员考试试题及答案
- 学习体育经纪人资格考试的综合方法 试题及答案
- 电气平行检验用表
- GB∕T 14527-2021 复合阻尼隔振器和复合阻尼器
- 一年级语文下册课件-21 小壁虎借尾巴24-部编版(15张PPT)
- 患者随访率低原因分析以及对策
- DB32∕T 2349-2013 杨树一元立木材积表
- 首届上海科技期刊编辑技能大赛试题
- 隧道二衬、仰拱施工方案
- Q∕GDW 12106.4-2021 物联管理平台技术和功能规范 第4部分:边缘物联代理与物联管理平台交互协议规范
- 中国癫痫诊疗指南-癫痫持续状态课件
- 计量认证实验室程序文件(全套)
- DGC型瓦斯含量直接测定装置使用说明书
评论
0/150
提交评论