




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DRAFT
PAGE
1
ELECTRICITYSTORAGEWHITEPAPER
ForRenewableTechnologiesWorkingGroupMeeting,September8,2008
DRAFT
SteveIsser,JD,PhD
VicePresidentandGeneralCounsel
GoodCompanyAssociates
816CongressAvenue,Suite1400
Austin,Texas78701
512-279-0766phone
\o"/"
www.GoodCompanyA
I. STORAGETECHNOLOGIES
Energystoragetechnologiesconvertelectricitytootherenergyforms,withacharacteristicturnaroundefficiencydrivenbythecomplexityofconversionandreconversionbetweenelectricityandthestoredenergyform:
90-95percentefficienttoconvertelectricitytokineticenergyandbackagainbyspeedinguporslowingdownaspinningflywheel.
~70-80%efficiencyforbatteries(electrochemicalenergystoragedevices)ifchargedanddischargedatmoderaterates.
~75%efficiencyforcompressedairstorage,asrapidcompressionheatsupagas,increasingitspressureandthusmakingfurthercompressiondifficult.
~30-50%efficiencyforhydrogenstorageofelectricityfromthecombinationofelectrolyserefficiencyandre-conversion
Therearefourkeycharacteristicsofenergystoragedevices:
EnergyDensity:Theamountofenergythatcanbesuppliedfromastoragetechnologyperunitweight(measuredinWatt-hoursperkg,Wh/kg).
EnergyRating:(expressedinkWhorMWh)isimportantindetermininghowlongadevicecansupplyenergy.
PowerCapability:(ExpressedinkWorMW)determineshowmuchenergycanbereleasedinasettime.A100kWhdeviceratedat20kWcansupply20kWofoutputfor5hours(20x5=100kWh).
DischargeTime:Theperiodoftimeoverwhichanenergystoragetechnologyreleasesitsstoredenergy.
CostsofStorageTechnologies
Dr.RobertB.Schainker,EPRI,EmergingTechnologiestoIncreasethePenetrationandAvailabilityofRenewables:EnergyStorage–ExecutiveSummary,July31,2008,p.8
.EnergyStorageCouncil-
Costsofenergystoragedevicesareusuallyquotedintermsofcost/kWhorcosts/kW.Theseareusuallyrelatedtotheapplicationthedevicewasdesignedtosatisfy.SomedeviceswillhaveahighcostperkWhbutrelativelylowercost/kWwhileotherswillbethereverse.Theeconomicsofastoragetechnologywilldependbothuponcostanditsoperatingcharacteristics,andthustheeligiblemarketsinwhichitcouldexpecttoparticipate.Theeconomicswillalsodependuponthecustomerandpurpose,forexample,marketarbitrageorancillaryservicesforanindependentgenerator,ortransmission/distributioninvestmentdeferralforatransmissionanddistributionserviceutility.
A. Battery,FlywheelandCapacitorTechnologies
1. Batteries
Thereareawiderangeofbatterytechnologies,somewhichhavebeenemployedforalmostacentury,suchaslead-acidbatteries,andsomeofwhicharestillindevelopandhaveyettobecommercialized.
a. LithiumIon
Lithiumionbatterytechnologyhasprogressedfromdevelopmentalandspecial-purposestatustoaglobalmass-marketproductinlessthan20years.Lithiumionbatteriesofferhigh-powerdensities,typically110–160Wh/kgandgenerallyacceptablecyclelife.Nano-compositeelectrodesystemsmayofferevenhigherenergydensities.Charge/dischargeefficienciesof90%(i.e.roundtripefficiencyfrominitialchargetocompletedischarge)arereportedforLithiumbatteries.Duringcharging,lithiumionsmoveout(de-intercalate)fromthelithiummetaloxidecathodeandintercalateintothegraphite-basedanode,withthereversehappeningduringthedischargereaction.Theconductingelectrolytetakesnopartinthereactionexceptforconductingthelithiumionsduringthechargeanddischargecycles.Lithiumionsystemsmustbemaintainedwithinwell-definedoperatinglimitstoavoidpermanentcelldamageorfailure.Thetechnologyalsolackstheabilitytoequalizetheamountofchargeinitscomponentcells.
Theapplicationofthetechnologytolarger-scalesystemsisrelativelylimitedtodate,althoughvariousdevelopmentsareinhandinrelationtotheautomotive,powerutility,submersibleandmarinesectors.ThemainhurdleassociatedwithmassenergystoragesystemsusingLibatteriesisthehighcost(above$600/kWh)duetospecialpackagingandinternaloverchargeprotectioncircuits.SeveralcompaniesareworkingtoreducethemanufacturingcostofLi-ionbatteriestocapturelargeenergymarkets,especiallytheautomotivemarket.
InAugust2007AESCorp.andAltairNanotechnologiesannouncedajointdevelopmentandequipmentpurchaseagreement.Thecompaniesfirstprojectwasamodularunitwhichcontainedtwo1MW,250kWhbatterystorageunits,consistingofalithiumionbatterystack,anAC-to-DCpowerconversionsystem,HVACunit,andacontrolsystem,mountedinaportabletractortrailersizecontainer.Thebatterystackswerecomposedofaseriesarrangementoflithiumioncellpackagesmountedinrackswithinatrailer.Powerconversionwasperformedbycommercially-availableinverterswithcontrolcoordinatedbyaprogrammablelogiccontroller(PLC).ThetwobatterystoragesystemprototypeswereinstalledanddemonstratedatasubstationownedandoperatedbyIndianapolisPower&Light(IPL).TheIPLtestsitewasselectedtobecapableofdispatching1-MWtoapowergridinresponsetoaregulationcommand.Eachofthestoragedeviceswasabletooperatecontinuouslybetween1-MWchargeto1-MWdischargewithpowerdispatchresponseoccurringwithinonesecond.Additionaltestingincludedsimulatedfrequencyregulation,whichinvolvedswitchingtheunitsfromchargetodischargeatupto1MWeveryfoursecondsforseveralhours.Batterystackefficiencymeasuredusingcycliccharge/dischargetests(at50%stateofcharge)variedfrom97%at250kWdispatchto91%at1MWdispatch.Efficiencydropsoffwiththepowerdispatchlevelduetointernallossesthatareproportionaltothecurrentsquared.FactoringintheDC-to-ACpowerconversionsystem,theaverageconversionefficiencymeasuredvariedbetween93%at250kWdispatchto86%at1MWdispatch.ThisdoesnotincludeHVACortrailerauxiliaryload.SummaryofKEMAValidationReport,TwoMegawattAdvancedLithium-ionBESSSuccessfullyDemonstratesPotentialforUtilityApplications,June27,2008.
AEShasinstalleda2MWAdvancedLi-ionbasedsystematitsAESHuntingtonBeachPowerPlantinCalifornia,whichwentonlineinNovember,2008.Theramprateis999MW/sec
withroundtripefficiencyof90%.Theunitcancompletelychargeordischargein15minutes.DaurenKalish,EnergyStorageRoleinSmartGrid,CPUCSmartGridRulemaking,June2009.
TheAESsystemhasbeenacceptedforregulationservicesinthePJMmarket.
b. SodiumSulfur(NaS)battery
NaSbatterytechnologyinvolveshighoperatingtemperatures,from290°to360°C.Thecellconstructionusesliquidsulfurasthepositiveelectrodeandliquidsodiumasthenegativeelectrode,separatedbyasolidelectrolyteofbeta-alumina.Theelectrolyteallowsonlythepositivesodiumionstopassthroughitandcombinewiththesulfurtoformsodiumpolysulfides.Itsoperatingtemperaturemustbemaintained,byroutineoperationorbyexternalheating.
NaSbatterieshavearelativelyhighenergydensity,withintherange150–240Wh/kg.NaSisdesignedforlongdischargecycles(8hours),buthasthecapacitytodischargeveryrapidlyandatmultiplesofratedpower.Thesebatterieshaveanestimatedlifetimeof15yearswithacyclelifeof2500andcharge/dischargeefficienciesupto90%.
Thebatterymoduleconsistsofcellsconnectedinseries/parallelorseriesarrayswithinathermallyinsulatedenclosure.Modulesarethenconfiguredinseriesand/orparalleltosupportmulti-megawattloads.Highlycorrosivematerialrequireprotectivemeasuressuchasasafetytubeincorporatedinthecelldesign,hermeticallysealedcells,double-layerstainlesssteel,vacuuminsulatedenclosurewithsandfillerpackingbetweencells.Atradeoffexistsbetweenpoweroutputandbatterylife.Operatingathigherpowerlevelsresultsinasignificantriseinoperatingtemperature,whichacceleratescellcorrosionandincreasecellresistancewhichshortensbatterylife.Expectedlifeis15yearsor2500fullcharge/dischargecycles,butcanbeasshortas500cyclesinlongduration(15minute)mode.BenjaminL.Norris,JeffNewmiller,GeorgiannePeek,NAS®BatteryDemonstrationatAmericanElectricPower,SandiaReport,SAND2006-6740,March2007.
ResearchanddevelopmentintoNaSbatterieshasbeenpioneeredinJapansince1983bytheTokyoElectricPowerCorporation(TEPCO)andNGKInsulators.NGKbroughttheNASbatterytomarketin2002,andinitiatedcommercialscaleNASmanufacturinginApril,2003.Todate,theinstalledcapacitybaseisover300MW,acrosssome200sites,principallyinJapan.An8MW,58MWhsysteminstalledataHitachiautomotiveplantinJapaniscurrentlytheworld’slargestbatteryintermsofstoragecapacity.
AEP’sfirstcommercialenergystoragesystemwasaNGKNASBatteryatCharleston,WV.Ithasacapacityof1.2MW,7.2MWh(6hourduration)andhasbeenoperationalsinceJune26,2006,ninemonthsaftercontractsweresigned.Theprimaryapplicationispeakshaving.Thebatteryhelpsshavetransformerpeakloads,andreducestransformertemperaturesbyseveraldegrees.Peakshavingimprovedthefeeder’sloadfactorfrom0.75to0.80,onaverage,andprovidedaPJMmarketenergyvalueof$5,500permonth.AliNourai,InstallationoftheFirstDistributedEnergyStorageSystem(DESS)atAmericanElectricPower(AEP),SandiaReport,SAND2007-3580,June2007.
Whilecostswillvarywithlocalsiteconditions,itistheunderstandingatAEPthatthenextNASbasedenergystorageprojectwillcostapproximately$2,500/kW,installed.AEPhasinstalledthree2MWbatteriesatsitesinOhio,WestVirginiaandIndiana,allwithdynamicislanding.AEPisalsoinstallinga4MWbatteryatPresido,Texas,attheendofatransmissionline,todeferatransmissionupgrade.AliNourai,UtilityDeploymentofEnergyStorage,Presentation,October2008.
c. FlowCellBatteries
Electrochemicalflowcellsystems,alsoknownasredoxflowcells,convertelectricalenergyintochemicalpotentialenergybymeansofareversibleelectrochemicalreactionbetweentwoliquidelectrolytesolutions.Thenameredoxflowbatteryisbasedontheredoxreactionbetweenthetwoelectrolytesinthesystem.Inaflowcellthetwoelectrolytesareseparatedbyasemi-permeablemembrane.Thismembranepermitsionflow,butpreventsmixingoftheliquids.Astheionsflowacrossthemembrane,anelectricalcurrentisinducedintheconductors.Flowcellsstoreenergyintheelectrolytesolutions,andthepowerandenergyratingsofredoxflowcellsareindependentvariables.Theirpowerratingisdeterminedbytheactiveareaofthecellstackassemblyandtheirstoragecapacitybytheelectrolytequantity.Overthepast20years,developmentanddemonstrationactivitieshavecenteredaroundfourprincipalelectro-chemistriesforflowbatteries:vanadium/vanadium(VanadiumRedoxBatteries,VRB),zincbromine(ZBB),polysulfidebromideandzinccerium.Installationstodatehaveprincipallyusedthevanadiumredoxandzincbromine.Severaldozenareinplace,mainlyinJapanandNorthAmerica.Amajoradvantageofthetechnologyistheabilityofthetechnologytoperformdischargecyclesindefinitelysotherearenosignificantwasteproductsassociatedwithoperation.Thesesystemshavequotedefficienciesvaryingfrom70%(ceriumzinc)to85%(VRB).Oneproblemwithflowbatteriesisthatmultiplepumpingcircuitsindicatethatregularmaintenanceactivitywillberequired.
AZBBdemonstrationprojectforPG&Eusedatransportable2MW/2MWHZBBbatteryenergystoragesystematasubstationtodemonstrateandassessvalueofT&Dupgradedeferral.PremiumPower,anewmanufacturer,claimsa30yearlifeforitsZinc-Flowtechnologyandtheabilitytowithstandanunlimitednumberofcycles,whetherfull-orpartial-dischargeevents.ItsTransFlow2000providesupto500kWofpowerand2.8MWhofenergystoragecapacityinasingleenclosurethatfitsontoa53'trailer.Thebatteryhasyettobedeployed,thoughCPSEnergyhaschosenitforapilotprojectandthecompanyisrumoredtohavearelationshipwithDukeEnergy.Untilactualoperatingdatabecomesavailable,thecompany’sclaimsshouldbetreatedwithhealthyskepticism,sincetheyfarexceedoperatingexperiencewithotherflowbatteries.
TheleadingproducerofvanadiumredoxflowbatteriesywasVRBPowerSystem,whichbecameinsolventandwasacquiredbytheChinesefirmPrudentEnergy,whothenformedaCanadiansubsidiarytomanagetheassets.Thevanadiumredoxsystemhasanadvantageoverthehybridsystemasthedischargetimeatfullpowercanbevaried.VRBscanbefullydischargedwithoutreducinglifeexpectancy.AVRBinSapporo,Japanhasundergonearound14,000dischargecycles.TheVRBsystemiscurrentlybeingdeployedatanumberofsitesaroundtheworld,includinga250kW,2MWhbatterybyPacifiCorpinUtahanda4MWunitinJapan.
d. Lead-Acid
Lead-Acidbatteriesareelectrochemicalcells,baseduponchemicalreactionsinvolvingleadandsulfuricacid.Lead-Acidisoneoftheoldestandmostdevelopedbatterytechnologies,usedinelectricalpowersystemsformorethanacentury.Theyprovideacost-competitiveandprovensolutiontoarangeofstoragerequirements.Leadacidbatteriesarelowcostcomparedtootherbatterytechnologies.Buttheyhavesomedisadvantagesincludingrelativelylimitedcyclelife,low-energydensityandalargefootprint.Thetypicalenergydensitiesarelowerthanotherbatteriesat25–45Wh/kg.Charge/dischargeefficienciesforlead-acidbatteriesare60–95%withself-dischargeratesof2to5%permonth.Thechemicalreactionwithinalead-acidrecombinationcellfavorsseveralhoursoflow-ratedischarge,ratherthanafewsecondsofhigh-rateduty.Dependinguponthedesignthatisusedandthequalityofthebattery,theusercanexpectbatterylifetorangefrom3yearstoaslongas9yearsat>80%capacity.Maximizingbatteryliferequireskeepingthebatteryroomtemperatureat20°C,asforevery10°above20°Cthedesignlifeofabatterywillbehalved.
e. Nickel
ThereareanumberofNickelbasedbatteriescurrentlyavailableorunderdevelopment,includingNickel-Cadmium(NiCd),Nickel-MetalHydride(Ni-MH),Nickel-Zinc(NiZn)andSodium-NickelChloride(NaNiCl2).NiCdandNi-MHarethemostdevelopedoftheNibatteries.ThesevariousNibatterytypescovertheenergydensityrange20–120Wh/kg.TheNiCdandNiMHbatteriescanreachuptoaround1500deepcycles.Ni-ZnandNa-NiCl2haveashorterlifetime.
NiCdbatterysystemsrankalongsidelead-acidbatteriesintermsoftheirmaturity.NiCdbatterieshavebeenproducedsincetheearly20thcenturyandformedthemajorityoftherechargeablebatterymarketinconsumerelectronicsbythe1990s.NiCdisarobustandprovenalternativetolead-acidbatteries,withhigherenergydensity,alongercyclelifeandlow-maintenancerequirements.Despitebeingusedwidelyinelectricvehicles,therearefewexamplesoftheirapplicationtoelectricitymarkets.GoldenValleyElectricAssociation(GVEA)inFairbanks,Alaskahasinstalledwhatisclaimedtobetheworld’smostpowerfulbattery.Thelarge-scaleNiCdBatteryEnergyStorageSystem(BESS)canprovide27MWofelectricityforaminimumof15minutestostabilizethelocalpowergridintheeventoflossofgeneration,andhasdelivered46MWfor5minutes.In2006theBESSrespondedto82events.TheBESSwasdesignedandbuiltbySaft,aninternationalbatterymanufacturer,andcomprises13,760SaftSBH920NiCdcellsarrangedinfourparallelstrings.TheNiCdbatteriesthemselvesareexpectedtocomplete100completeand500partialdischargesinthesystem’s20yeardesignlife.StevenEckroad,EPRI,GoldenValleyCooperativeProjectinAlaska-40MWNickel-CadmiumBattery,CaliforniaEnergyCommissionStaffWorkshop,February24,2005.
Concernsaboutcadmiumtoxicityandassociatedrecyclingissuesareabarriertogainingconsentforfuturelarge-scalestoragesystemsbaseduponNiCdtechnology.
TheNaNiCl2battery,otherwiseknownastheZEBRAbattery,isahigh-temperaturebatterysystem,developedandproveninvarioustractionandpropulsionapplications.Itscellconstructioncomprisessodiumandnickelchlorideelectrodes,separatedbyabeta-aluminaelectrolyte,whichisabletoconductsodiumionsbutnotelectrons.Itoffersanumberofadvantagesrelativetosodium–sulfursystems,includingbettersafetycharacteristics,highercellvoltageandtheabilitytowithstandlimitedoverchargeanddischarge.NiCdandNi-MHofferthelowestefficiency,dischargingaround70%oftheenergyusedduringcharging.Incomparison,NiZnbatteriesofferefficienciesof~80%andNaNiCl2batterieshaveanefficiencyofaround90%.BothNiCdandNi-MHbatteriesareexpensivetomanufacturerelativetootherbatterytechnologies.
2. Flywheels
Theflywheelactsasamechanicalbatteryandcomprisesashaftmountedmassrotatingin(orcarrying)amotor-generatorwinding–convertingelectricalenergyintokineticenergyasitaccelerates(chargeswhenspeedingup)andthen,whenadischargeofenergyisrequired,reversestheflowofenergyandslowsdownasitgivesupitsstoredenergyintheformofelectricalpower.
Ingeneral,flywheelscanbeclassifiedaslowspeedorhighspeed.Theformeroperateatrevolutionsperminute(rpm)measuredinthousands,whilethelatteroperateatrpmmeasuredinthetensofthousands.Increasingrpmsignificantlyincreasestheenergydensityofaflywheel,butahighermassflywheelcanstoremoreenergyperrpm.Operatingathigherrpmnecessitatesfundamentaldifferencesindesignapproach.Whilelow-speedflywheelsareusuallymadefromsteel,high-speedflywheelsaretypicallymadefromGFRE(graphitefiberreinforcedepoxy)andfiberglasscompositematerialsthatwillwithstandthehigherstresses.High-speedflywheelsuniversallyemploymagneticbearings(allowingtheflywheeltolevitate)andvacuumenclosurestoreduceoreliminatefrictionlossesfrombearingsandairdrag.Whilesomelow-speedflywheelsuseonlyconventionalmechanicalbearings,mostflywheelsuseacombinationofthetwobearingtypes.Vacuumsarealsoemployedinsomelow-speedflywheels.ThebenefitsofincreasedperformanceofferedbyGFREcompositesmustbebalancedagainstthefarlowerrawmaterialcostofhighqualitysteels.
DCflywheelenergystoragesystemsaregenerallymorereliablethanbatteries,soapplicabilityismostlyanissueofcost-effectiveness.Batterieswillusuallyhavealowerfirstcostthanflywheels,butsufferfromasignificantlyshorterequipmentlifeandhigherannualoperationandmaintenanceexpenses.Thus,flywheelswilllookespeciallyattractiveinoperatingenvironmentsthataredetrimentaltobatterylife,suchasfrequentcycling.
BeaconPowerCorphasdevelopeda100kWmodulebasedonhigherrotationalspeedsratherthanmasstoincreasetheenergystored.Apatented,co-mingledrimtechnology(PCRT)hasbeendevelopedtopreventcracksdevelopingduetocentrifugalforces,leadingtosafetyimprovements.BeaconPowerquotesalifetimeof20yearsforitsflywheels.Thetechnologyhastheabilitytodischargeoverperiodsupto30minutes.BeaconPowerCorpenvisagesarraysofthe100kWmodulesinsystemsofaround20MWcapacity,providingupanddownregulationequalto40MWofswing.
3. UltraCapacitors
Themostdirectwayofstoringelectricalenergyiswithacapacitor.Acapacitorconsistsoftwometalplatesseparatedbyanonconductinglayercalledadielectric.Whenoneplateischargedwithelectricityfromadirect-currentsource,theotherplatewillhaveinducedinitachargeoftheoppositesign.Tobuildstandardcapacitorsthatcanholdasignificantamountofenergyrequiresaverylargedielectric,makingtheuseoflargecapacitorsuneconomical.Theultracapacitors(alsoknownassupercapacitorsordouble-layercapacitors)solvesthisproblemthroughtheuseofahighsurfaceareamaterialsuchasactivatedcarbonastheconductorwithanaqueousornon-aqueouselectrolyte.Ultracapacitorscontainasignificantlyenlargedelectrodesurfaceareacomparedtoconventionalcapacitors,aswellasaliquidelectrolyteandapolymermembrane.Theenergystoragecapabilitiesofultracapacitorsaresubstantiallygreaterthanthatofconventionalcapacitors,byapproximatelytwoordersofmagnitude.
Ultracapacitorsarecapableofchargingsubstantiallyfasterthanconventionalbatteries,
beingrechargedalmostindefinitelycomparedtobatteriesthatonlyhavearelativelysmallnumberofrechargesbeforeneedingreplacement;andcanoperatedowntotemperaturesof-25°C.Energydensitiesof20-30Wh/kghasbeenreportedforultracapacitors,whilerecentresearchatMITsuggeststhatenergydensitiesofgreaterthan60Wh/kgandalifetimelongerthan300,000cyclesisachievable.Typicalefficienciesforultracapacitorsarehigh(85–98%),makingthemanattractivestoragetechnologyformanyapplications.Ultracapacitorshavebeenmarketedsincethe1980s,withthefirstapplicationinmilitaryprojects,startingtheenginesofheavyequipmentsuchasbattletanksandsubmarinesorreplacingbatteriesinmissiles.In2005,theultracapacitormarketwasbetweenUS$272millionand$400million,andisgrowing,especiallyintheautomotivesector.ChrisNaish,IanMcCubbin,OliverEdbergandMichaelHarfoot,OutlookofEnergyStorageTechnologies,forEuropeanParliament'scommitteeonIndustry,ResearchandEnergy(ITRE),February2008,p.11.
.
B. CompressedAirEnergyStorage(CAES)
ThefirstcommercialscaleCAESplantintheworldwasthe290MWplantinHuntorf,Germany,operatedbyNordwestDeutscheKraftwerke(NDK)since1978.TheHuntorfplant,withtwosaltcaverns,hasacapacityof290MWandrunsonadailycycleinwhichitchargestheairstoragefor8hoursandprovidesgenerationforupto4hours.Itisprimarilyusedtoprovideancillaryservices.TheAlabamaElectricCo-operativeinMcIntosh,Alabama,USAbuiltthesecondcommercialscaleCAESplant,withacapacityofabout110MWofpowergeneration.Theplantisconstructedinconnectionwitha100MWcoalplantandactsasaregulatingcapacitybetweenthecoalplant’scapacityandtheelectricitydemand.TheAlabamaplantwasbuiltbasedonacompetitivelyawardedfixedprice,turnkeycontract,costingabout$460perkW(1991dollars).Theplantwasbuiltinabout2.5years.TheonemajordesigndifferencebetweentheGermanandAlabamaCAESplantsistheAlabamaplanthadanexhaustgasheatexchangerinittoheattheairafteritcamefromstorage,whichreducedtheplant’sfueluseby25percent.
FirstgenerationCAESusedasimpledesignwiththecompressorandgeneratoronthesameshaft.Thesingle-shaftturbomachinerytrainwithmultiplecomponentshassomeoperationalandmaintenancecomplications.Toinitiatecompressionoperation,theturbinetypicallybringsthemachinerytraintospeed.Aftersynchronization,theturbineisdecoupledandshutoffandthecompressorsareleftoperating.Thismeansthattheturbinesarecalledupontoinitiatebothcompressionandgeneration.Newdesignswouldusemultiplecompressorsonaseparateshaft,providingmoreoperationalflexibility.Thenewdesignseliminateoperationswitchovertimebydecouplingthecompressionandturbo-expandertrains,permittingdirectswitchingbetweencompressionandexpansionoperation.Thischangemeanscompressorsizecanbeoptimizedindependentlyoftheturbo-expanderdesignandpermitsstandardproductioncompressorstobeusedinthesystemconfiguration.ItalsomeansthataCAESwouldbeanidealancillaryservicemachine,sinceitwouldprovideacontrollableloadincompressormodeandafaststartgenerator,bothabletooperateindependently.ElectricPowerResearchInstitute,CompressedAirEnergyStorageScopingStudyforCalifornia,fortheCaliforniaEnergyCommission,PIERFinalReport,November2008,p.5.
TherampratesforaCAESsystemarebetterthanforanequivalentgasturbineplant.
TheMcIntoshplantcanrampatapproximately18MWperminute,whichisabout60%greaterthanfortypicalgasturbines.Proposedplantshavebeendesignedtoreachfullpowerin14minutes(or7minutesforanemergencystart)—whichtranslatesto9.6to19MWperminuteper135MWmodule.SamirSuccarandRobertH.Williams,CompressedAirEnergyStorage:Theory,Resources,AndApplicationsForWindPower,PrincetonEnvironmentalInstitute,April8,2008,p.23.
CAESstorageisdependentontheavailabilityofsuitablesaltdomeformationsorrockcaverns.TexasdomalsaltintheEastTexasandGulfCoastbasinsisrelativelypureandhomogeneous,butthelateralextentofdomesislimited,however,andrestrictingtheareausefulforcaverndevelopment.BeddedsaltofthePermianBasinismuchlesspurethanTexasdomesalt.Thedistributionoflow-solubilityimpuritiesisoneofthelimitationsofengineeringsolution-minedcaverns.However,thesesaltbedsaretypicallycontinuousoverlargeareas,manyclosetoareasslatedforextensivewinddevelopment.
Abovegroundairstoragevesselsorairstoragepipelinesystemscanalsobeusedtostorecompressedair.SuchsystemsareattractivebecausetheyallowCAESplantstobesitedalmostanywhere,sincenoundergroundgeologicformationisneeded.Thismethodusesbanksofhighstrengthsteelpipinginverticalconfigurationstoachievethedesiredresult.Thestorageunitswouldbeplacedinanexcavation,resultinginafourtosixstorybuilding.Thisprovidesflexiblestoragequantitiesataconstantpressureandtemperaturewithouttheconventionalgeologicalconstraints.However,amini-CAESfacilityhasonlyafewhoursofenergystorage.Suchsystemsareestimatedtobemoreexpensivethanundergroundsalt-basedairstoragecaverns,atabout$2,500/kW.NYSERDA,Mini-CompressedAirEnergyStorageforTransmissionCongestionReliefandWindShapingApplications,July2008.
C. OtherTechnologies
1. Hydrogen
Theessentialelementsofahydrogen-basedenergystoragesy
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校招财务顾问聘用合同书
- 信息技术咨询服务合同书
- 2025中外劳务合作合同5篇
- 住宅小区物业管理委托合同标准文本
- 美容院委托管理及代运营合同
- 新能源汽车租赁代理合同指南
- 有关租赁合同担保-股东会决议范本
- 软件开发合同范本
- 购销合同范本及合同协议书样本
- 住宅及附属设施抵押合同范本
- 电力工程施工组织措施方案
- T∕HGJ 12404-2021 仪表维修车间设计标准
- 【MOOC】园林植物应用设计-北京林业大学 中国大学慕课MOOC答案
- 继续教育《生态文明建设的理论与实践》考试试题及答案
- 组织部2024年双拥工作计划
- 2023年新疆兵团事业单位开展招聘考试真题
- 防溺水应急救援培训
- 教育资源共享平台
- 2024年新人教版四年级数学下册《第6单元第2课时 小数加减法》教学课件
- 地铁消防设施检测技术规程 -DB13-T 5317-2020 河北
- DLT 5707-2014 电力工程电缆防火封堵施工工艺导则
评论
0/150
提交评论