陕西省煤炭建设公司第一中学2025届高一数学第一学期期末学业质量监测试题含解析_第1页
陕西省煤炭建设公司第一中学2025届高一数学第一学期期末学业质量监测试题含解析_第2页
陕西省煤炭建设公司第一中学2025届高一数学第一学期期末学业质量监测试题含解析_第3页
陕西省煤炭建设公司第一中学2025届高一数学第一学期期末学业质量监测试题含解析_第4页
陕西省煤炭建设公司第一中学2025届高一数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省煤炭建设公司第一中学2025届高一数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.甲、乙两人在相同的条件下各打靶6次,每次打靶的情况如图所示(虚线为甲的折线图),则以下说法错误的是A.甲、乙两人打靶的平均环数相等B.甲的环数的中位数比乙的大C.甲的环数的众数比乙的大D.甲打靶的成绩比乙的更稳定2.已知且,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.函数的值域是A. B.C. D.4.设则的值为A. B.C.2 D.5.对于函数,,“”是“的图象既关于原点对称又关于轴对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知直线,与平行,则的值是()A0或1 B.1或C.0或 D.7.函数,则函数的零点个数为()A.2个 B.3个C.4个 D.5个8.下列各组角中,两个角终边不相同的一组是()A.与 B.与C.与 D.与9.直线与圆x2+y2=1在第一象限内有两个不同的交点,则的取值范围是()A. B.C. D.10.已知,,,则的大小关系为A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最大值是____________.12.设,则__________13.设函数,则____________.14.设函数,若互不相等的实数、、满足,则的取值范围是_________15.若,则的值为______16.圆关于直线的对称圆的标准方程为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.一只口袋装有形状大小都相同的只小球,其中只白球,只红球,只黄球,从中随机摸出只球,试求(1)只球都是红球的概率(2)只球同色概率(3)“恰有一只是白球”是“只球都是白球”的概率的几倍?18.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.19.在中,,记,且为正实数),(1)求证:;(2)将与的数量积表示为关于的函数;(3)求函数的最小值及此时角的大小20.已知函数.(1)判断的奇偶性,并证明;(2)证明:在区间上单调递减.21.已知函数的图象在直线的下方且无限接近直线.(1)判断函数的单调性(写出判断说明即可,无需证明),并求函数解析式;(2)判断函数的奇偶性并用定义证明;(3)求函数的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】甲:8,6,8,6,9,8,平均数为7.5,中位数为8,众数为8;乙:4,6,8,7,10,10,平均数为7.5,中位数7.5,众数为10;所以可知错误的是C.由折线图可看出乙的波动比甲大,所以甲更稳定.故选C2、D【解析】根据充分、必要条件的知识确定正确选项.【详解】“”时,若,则,不能得到“”.“”时,若,则,不能得到“”.所以“”是“”的既不充分也不必要条件.故选:D3、A【解析】由,知,解得令,则.,即为和两函数图象有交点,作出函数图象,如图所示:由图可知,当直线和半圆相切时最小,当直线过点A(4,0)时,最大.当直线和半圆相切时,,解得,由图可知.当直线过点A(4,0)时,,解得.所以,即.故选A.4、D【解析】由题意可先求f(2),然后代入f(f(2))=f(﹣1)可得结果.【详解】解:∵∴f(2)∴f(f(2))=f(﹣1)=故选D【点睛】本题主要考查了分段函数的函数值的求解,解题的关键是需要判断不同的x所对应的函数解析式,属于基础试题5、C【解析】由函数奇偶性的定义求出的解析式,可得出结论.【详解】若函数的定义域为,的图象既关于原点对称又关于轴对称,则,可得,因此,“”是“的图象既关于原点对称又关于轴对称”的充要条件故选:C.6、C【解析】由题意得:或,故选C.考点:直线平行的充要条件7、D【解析】函数h(x)=f(x)﹣log4x的零点个数⇔函数f(x)与函数y=log4x的图象交点个数.画出函数f(x)与函数y=log4x的图象(如上图),其中=的图像可以看出来,当x增加个单位,函数值变为原来的一半,即往右移个单位,函数值变为原来的一半;依次类推;根据图象可得函数f(x)与函数y=log4x的图象交点为5个∴函数h(x)=f(x)﹣log4x的零点个数为5个.故选D8、D【解析】由终边相同的角的性质逐项判断即可得解.【详解】对于A,因为,所以与终边相同;对于B,因为,所以与终边相同;对于C,因为,所以与终边相同;对于D,若,解得,所以与终边不同.故选:D.9、D【解析】如图所示:当直线过(1,0)时,将(1,0)代入直线方程得:m=;当直线与圆相切时,圆心到切线的距离d=r,即,解得:m=舍去负值.则直线与圆在第一象限内有两个不同的交点时,m的范围为.故选D10、A【解析】利用对数的性质,比较a,b的大小,将b,c与1进行比较,即可得出答案【详解】令,结合对数函数性质,单调递减,,,.【点睛】本道题考查了对数、指数比较大小问题,结合相应性质,即可得出答案二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】把函数化为的形式,然后结合辅助角公式可得【详解】由已知,令,,,则,所以故答案为:12、2【解析】由函数的解析式可知,∴考点:分段函数求函数值点评:对于分段函数,求函数的关键是要代入到对应的函数解析式中进行求值13、【解析】依据分段函数定义去求的值即可.【详解】由,可得,则由,可得故答案为:14、【解析】作出函数的图象,设,求出的取值范围以及的值,由此可求得的取值范围.【详解】作出函数的图象,设,如下图所示:二次函数的图象关于直线对称,则,由图可得,可得,解得,所以,.故答案为:.【点睛】关键点点睛:本题考查零点有关代数式的取值范围的求解,解题的关键在于利用利用图象结合对称性以及对数运算得出零点相关的等式与不等式,进而求解.15、0【解析】由,得到∴sin∴2sin+4两边都除以,得:2tan故答案为016、【解析】两圆关于直线对称,则两圆的圆心关于直线对称,且两圆半径相同,由此求解即可【详解】由题,圆的标准方程为,即圆心,半径为,设对称圆的圆心为,则,解得,所以对称圆的方程为,故答案为:【点睛】本题考查圆关于直线对称的圆,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)8【解析】记两只白球分别为,;两只红球分别为,;两只黄球分别为,用列举法得出从中随机取2只的所有结果;(1)列举只球都是红球的种数,利用古典概型概率公式,可得结论;(2)列举只球同色的种数,利用古典概型概率公式,可得结论;(3)求出恰有一只是白球的概率,只球都是白球的概率,可得结论【详解】解:记两只白球分别,;两只红球分别为,;两只黄球分别为,从中随机取2只的所有结果为,,,,,,,,,,,,,,共15种(1)只球都是红球为共1种,概率(2)只球同色的有:,,,共3种,概率(3)恰有一只是白球的有:,,,,,,,,共8种,概率;只球都是白球的有:,概率所以:“恰有一只是白球”是“只球都是白球”的概率的8倍【点睛】本题考查概率的计算,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题18、(1)2;(2)(1,3].【解析】(1)根据函数是奇函数求得的解析式,比照系数,即可求得参数的值;(2)根据分段函数的单调性,即可列出不等式,即可求得参数的范围.【详解】(1)设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x).于是当x<0时,f(x)=x2+2x=x2+mx,所以m=2.(2)要使f(x)在[-1,a-2]上单调递增,结合f(x)的图象知所以1<a≤3,故实数a的取值范围是(1,3].【点睛】本题考查利用奇偶性求参数值,以及利用函数单调性求参数范围,属综合基础题.19、(1)证明见解析;(2);(3)2,.【解析】(1)由,得到,根据,即可求解;(2)由,整理得,即可求得表达式;(3)由(2)知,结合基本不等式,求得的最小值,再利用向量的夹角公式,即可求解.【详解】(1)在中,,可得,所以,所以.(2)由,可得,即,整理得,所以(3)由(2)知,因为为正实数,则,当且仅当时,即时,等号成立,所以的最小值为2,即,此时,因为,可得,又因为,此时为等边三角形,所以【点睛】求平面向量的模的2种方法:1、利用及,把向量模的运算转化为数量积的运算;2、利用向量的几何意义,即利用向量加、减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.20、(1)是偶函数,证明见解析(2)证明见解析【解析】(1)先求定义域,再利用函数奇偶性的定义证明即可,(2)利用单调性的定义证明【小问1详解】为偶函数,证明如下:定义域为R,因为,所以是偶函数.【小问2详解】任取,且,则因为,所以,所以,即,由函数单调性定义可知,在区间上单调递减.21、(1)函数在上单调递增,(2)奇函数,证明见解析(3)【解析】(1)根据函数的单调性情况

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论