2025届山西省应县一中数学高二上期末质量跟踪监视试题含解析_第1页
2025届山西省应县一中数学高二上期末质量跟踪监视试题含解析_第2页
2025届山西省应县一中数学高二上期末质量跟踪监视试题含解析_第3页
2025届山西省应县一中数学高二上期末质量跟踪监视试题含解析_第4页
2025届山西省应县一中数学高二上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山西省应县一中数学高二上期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知矩形,为平面外一点,且平面,,分别为,上的点,且,,,则()A. B.C.1 D.2.三棱锥A-BCD中,E,F,H分别为边CD,AD,BC的中点,BE,DH的交点为G,则的化简结果为()A. B.C. D.3.已知函数f(x)的图象如图所示,则导函数f(x)的图象可能是()A. B.C. D.4.考试停课复习期间,小王同学计划将一天中的7节课全部用来复习4门不同的考试科目,每门科目复习1或2节课,则不同的复习安排方法有()种A.360 B.630C.2520 D.151205.若在直线上,则直线的一个方向向量为()A. B.C. D.6.已知向量,,且与互相垂直,则k的值是().A.1 B.C. D.7.已知命题p:函数在(0,1)内恰有一个零点;命题q:函数在上是减函数,若p且为真命题,则实数的取值范围是A. B.2C.1<≤2 D.≤l或>28.已知函数,则等于()A.0 B.2C. D.9.如图,在棱长为1的正方体中,P、Q、R分别是棱AB、BC、的中点,以PQR为底面作一个直三棱柱,使其另一个底面的三个顶点也都在正方体的表面上,则这个直三棱柱的体积为()A. B.C. D.10.已知角为第二象限角,,则的值为()A. B.C. D.11.已知点是抛物线上的一点,F是抛物线的焦点,则点M到F的距离等于()A.6 B.5C.4 D.212.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.设,则曲线在点处的切线的倾斜角是_______14.曲线在处的切线斜率为___________.15.若球的大圆的面积为,则该球的表面积为___________.16.从10名大学毕业生中选3个人担任村主任助理,则甲、乙至少有1人入选,而丙没有入选不同选法的种数为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的一个顶点为,离心率为,直线与椭圆交于不同的两点M,N(1)求椭圆的标准方程;(2)当的面积为时,求的值18.(12分)如图,在长方体中,底面是边长为1的正方形,侧棱长为2,且动点P在线段AC上运动(1)若Q为的中点,求点Q到平面的距离;(2)设直线与平面所成角为,求的取值范围19.(12分)如图,四棱锥的底面是正方形,PD⊥底面ABCD,M为BC的中点,(1)证明:;(2)设平面平面,求l与平面MND所成角的正弦值20.(12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马中,侧棱底面,且,过棱的中点,作交于点,连接(1)证明:.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)记阳马的体积为,四面体的体积为,求的值;(3)若面与面所成二面角的大小为,求的值21.(12分)已知:圆是的外接圆,边所在直线的方程为,中线所在直线的方程为,直线与圆相切于点.(1)求点和点的坐标;(2)求圆的方程.22.(10分)求证:(1)是上的偶函数;(2)是上的奇函数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由,,得,然后利用向量的加减法法则把向量用向量表示出来,可求出的值,从而可得答案【详解】解:因为,,所以所以,因为,所以,所以,故选:B2、D【解析】依题意可得为的重心,由三角形重心的性质可知,由中位线定理可知,再利用向量的加法运算法则即可求出结果【详解】解:依题意可得为的重心,,,分别为边,和的中点,,,故选:D3、D【解析】根据导函数正负与原函数单调性关系可作答【详解】原函数在上先减后增,再减再增,对应到导函数先负再正,再负再正,且原函数在处与轴相切,故可知,导函数图象为D故选:D4、C【解析】,先安排复习节的科目,然后安排其余科目,由此计算出不同的复习安排方法数.【详解】第步,门科目选门,安排节课,方法数有种,第步,安排其余科目,每门科目节课,方法数有种,所以不同的复习安排方法有种.故选:C5、D【解析】由题意可得首先求出直线上的一个向量,即可得到它的一个方向向量,再利用平面向量共线(平行)的坐标表示即可得出答案【详解】∵在直线上,∴直线的一个方向向量,又∵,∴是直线的一个方向向量故选:D6、D【解析】利用向量的数量积为0可求的值.【详解】因与互相垂直,故,故即,故.故选:D.7、C【解析】命题p为真时:;命题q为真时:,因为p且为真命题,所以命题p为真,命题q为假,即,选C考点:命题真假8、D【解析】先通过诱导公式将函数化简,进而求出导函数,然后算出答案.【详解】由题意,,故选:D.9、C【解析】分别取的中点,连接,利用棱柱的定义证明几何体是三棱柱,再证明平面PQR,得到三棱柱是直三棱柱求解.【详解】如图所示:连接,分别取其中点,连接,则,且,所以几何体是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因为正方体的棱长为1,所以,所以直三棱柱的体积为,故选:C10、C【解析】由同角三角函数关系可得,进而直接利用两角和的余弦展开求解即可.【详解】∵,是第二象限角,∴,∴.故选:C.11、B【解析】先求出,再利用焦半径公式即可获解.【详解】由题意,,解得所以故选:B.12、B【解析】求出不等式的等价形式,结合充分条件和必要条件的定义进行判断即可【详解】由得或,由得,因为或推不出,但能推出或成立,所以“”是“”的必要不充分条件,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用导数的定义,化简整理,可得,根据导数的几何意义,即可求得答案.【详解】因为=,所以,则曲线在点处的切线斜率为,即,又所以所求切线的倾斜角为故答案为:14、##【解析】首先求得的导数,由导数的几何意义可得切线的斜率.【详解】因为函数的导数为,所以可得在处的切线斜率,故答案为:15、【解析】设球的半径为,则球的大圆的半径为,根据圆的面积公式列方程求出,再由球的表面积公式即可求解.【详解】设球的半径为,则球的大圆的半径为,所以球的大圆的面积为,可得,所以该球的表面积为.故答案为:.16、49【解析】丙没有入选,相当于从9个人中选3人,分为两种情况:甲乙两人只有一人入选;甲乙两人都入选,分别求出每种情况的选法数,再利用分类加法计数原理即可得解.【详解】丙没有入选,把丙去掉,相当于从9个人中选3人,甲、乙至少有1人入选,分为两种情况:甲乙两人只有一人入选;甲乙两人都入选.甲乙两人只有一人入选,选法有种;甲乙两人都入选,选法有种.所以,满足题意的选法共有种.故答案为:49.【点睛】本题考查组合的应用,其中涉及到分类加法计数原理,属于中档题.一些常见类型的排列组合问题的解法:(1)特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;(2)分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏;(3)间接法(排除法),从总体中排除不符合条件的方法数,这是一种间接解题的方法;(4)捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列;(5)插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空;(6)去序法或倍缩法;(7)插板法:个相同元素,分成组,每组至少一个的分组问题.把个元素排成一排,从个空中选个空,各插一个隔板,有;(8)分组、分配法:有等分、不等分、部分等分之别.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由椭圆的一个顶点为,得到,再由椭圆的离心率为,求得,进而求得椭圆的标准方程;(2)由椭圆的对称性得到,联立方程组求得,根据的面积为,列出方程,即可求解.【小问1详解】解:由题意,椭圆的一个顶点为,可得,又由椭圆的离心率为,可得,所以,则,所以椭圆的标准方程为.【小问2详解】解:设,且根据椭圆的对称性得,联立方程组,整理得,解得,因为的面积为,可得,解得.18、(1)1(2)【解析】(1)以AB,AD,为x,y,z轴正向建立直角坐标系,利用空间向量法求出平面的法向量,结合点到平面的距离的向量求法计算即可;(2)设点,,进而得出的坐标,利用向量的数量积即可列出线面角正弦值的表达式,结合二次函数的性质即可得出结果.【小问1详解】由题意,分别以AB,AD,为x,y,z轴正向建立直角坐标系,于是,,,,,设平面法向量所以,解得,,令得,,设点Q到平面的距离为d,【小问2详解】由(1)可知,平面的法向量,由P点在线段AC上运动可设点,于是,,所以,的取值范围是19、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,利用向量法证得.(2)利用向量法求得与平面所成角的正弦值.【小问1详解】∵PD⊥平面ABCD,,以点D为坐标原点,DA,DC,DP所在直线分别为x,y,z轴建立如图所示的空间直角坐标系Dxyz,则D(0,0,0),N(,0,),P(0,0,2),M(1,2,0)所以,,所以,所以.【小问2详解】由正方形ABCD得,CD//AB,∵平面PAB,平面PAB,∴CD//平面PAB;又∵平面PCD,平面平面∴CD//l;于是CD与平面MND所成的角即为l与平面MND所成的角由(1)知,设平面MND的一个法向量,则,取,则,于是是平面MND的一个法向量,因为,设l与平面MND所成角为,则20、(1)证明见解析,是鳖臑,四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB(2)4(3)【解析】(1)由直线与直线,直线与平面的垂直的转化证明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判断DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,确定直角即可;(2)PD是阳马P−ABCD的高,DE是鳖臑D−BCE的高,BC⊥CE,,由此能求出的值(3)根据公理2得出DG是平面DEF与平面ACBD的交线.利用直线与平面的垂直判断出DG⊥DF,DG⊥DB,根据平面角的定义得出∠BDF是面DEF与面ABCD所成二面角的平面角,转化到直角三角形求解即可【小问1详解】因为PD⊥底面ABCD,所以PD⊥BC,由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE⊂平面PDC,所以BC⊥DE又因为PD=CD,点E是PC的中点,所以DE⊥PC而PC∩CB=C,所以DE⊥平面PBC.而PB⊂平面PBC,所以PB⊥DE又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB;【小问2详解】由已知,PD是阳马P−ABCD的高,∴,由(Ⅰ)知,,在Rt△PDC中,∵PD=CD,点E是PC的中点,∴,∴【小问3详解】如图所示,在面BPC内,延长BC与FE交于点G,则DG是平面DEF与平面ABCD的交线由(1)知,PB⊥平面DEF,所以PB⊥DG又因为PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD所以DG⊥DF,DG⊥DB故∠BDF是面DEF与面ABCD所成二面角的平面角,设PD=DC=1,BC=λ,有,在Rt△PDB中,由DF⊥PB,得,则,解得所以故当面DEF与面ABCD所成二面角的大小为时,21、(1)A(1,7),(2)【解析】(1)与的的交点为点D,与的的交点为点A,联立解方程即可得出结果.(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论