2025届江西省新余市分宜中学数学高一上期末统考模拟试题含解析_第1页
2025届江西省新余市分宜中学数学高一上期末统考模拟试题含解析_第2页
2025届江西省新余市分宜中学数学高一上期末统考模拟试题含解析_第3页
2025届江西省新余市分宜中学数学高一上期末统考模拟试题含解析_第4页
2025届江西省新余市分宜中学数学高一上期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西省新余市分宜中学数学高一上期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.与函数的图象不相交的一条直线是()A. B.C. D.2.若函数满足且的最小值为,则函数的单调递增区间为A. B.C. D.3.下列各组函数是同一函数的是()①与②与③与④与A.②④ B.③④C.②③ D.①④4.将函数的图象向左平移个单位后得到的图象关于轴对称,则正数的最小值是()A. B.C. D.5.关于,,下列叙述正确的是()A.若,则是的整数倍B.函数的图象关于点对称C.函数的图象关于直线对称D.函数在区间上为增函数.6.已知向量,且,则A. B.C. D.7.下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行直线确定三个平面.其中正确有A.1个 B.2个C.3个 D.4个8.函数的定义域为()A.(0,2] B.[0,2]C.[0,2) D.(0,2)9.已知全集U=R,则正确表示集合M={0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A. B.C. D.10.设,,,则有()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若正数,满足,则________.12.有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%,有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从__________年开始,快递业产生的包装垃圾超过4000万吨.(参考数据:,)13.的化简结果为____________14.已知,且.(1)求的值;(2)求的值.15.函数的图象与轴相交于点,如图是它的部分图象,若函数图象相邻的两条对称轴之间的距离为,则_________.16.正三棱锥中,,则二面角的大小为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若为偶函数,求实数m的值;(2)当时,若不等式对任意恒成立,求实数a的取值范围;(3)当时,关于x的方程在区间上恰有两个不同的实数解,求实数m的取值范围.18.已知函数f(x)=ln(ex+1)+ax是偶函数,g(x)=f(lnx)(e=2.71828…)(Ⅰ)求实数a的值;(Ⅱ)判断并证明函数g(x)在区间(0,1)上的单调性19.已知函数,.(1)用函数单调性的定义证明:是增函数;(2)若,则当为何值时,取得最小值?并求出其最小值.20.设函数(1)求函数的最小正周期和单调递增区间;(2)求函数在上的最大值与最小值及相应的x的值.21.如图所示,设矩形的周长为cm,把沿折叠,折过去后交于点,设cm,cm(1)建立变量与之间的函数关系式,并写出函数的定义域;(2)求的最大面积以及此时的的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意求函数的定义域,即可求得与函数图象不相交的直线.【详解】函数的定义域是,解得:,当时,,函数的图象不相交的一条直线是.故选:C【点睛】本题考查正切函数的定义域,属于简单题型.2、D【解析】分析:首先根据诱导公式和辅助角公式化简函数解析式,之后应用题的条件求得函数的最小正周期,求得的值,从而求得函数解析式,之后利用整体思维,借助于正弦型函数的解题思路,求得函数的单调增区间.详解:,根据题中条件满足且的最小值为,所以有,所以,从而有,令,整理得,从而求得函数的单调递增区间为,故选D.点睛:该题考查的是有关三角函数的综合问题,涉及到的知识点有诱导公式、辅助角公式、函数的周期以及正弦型函数的单调区间的求法,在结题的过程中,需要对各个知识点要熟记,解题方法要明确.3、B【解析】利用函数的三要素:定义域、值域、对应关系相同即可求解.【详解】对于①,与,定义域均为,但对应,两函数的对应关系不同,故①不是同一函数;对于②,的定义域为,的定义域为,故②不是同一函数;对于③,与定义域均为,函数表达式可化简为,故③两函数为同一函数;对于④,根据函数的概念,与,定义域、对应关系、值域均相同,故④为同一函数,故选:B【点睛】本题考查了函数的三要素,函数相同只需函数的三要素:定义域、值域、对应关系相同,属于基础题.4、A【解析】图象关于轴对称,则其为偶函数,根据三角函数的奇偶性即可求解.【详解】将的图象向左平移个单位后得到,此时图象关于轴对称,则,则,当时,取得最小值故选:A.5、B【解析】由题意利用余弦函数的图象和性质,逐一判断各个结论是否正确,从而得出结论.【详解】对于A,的周期为,若,则是的整数倍,故A错误;对于B,当时,,则函数的图象关于点中心对称,B正确;对于C,当时,,不是函数最值,函数的图象不关于直线对称,C错误;对于D,,,则不单调,D错误故选:B.6、B【解析】由已知得,因为,所以,即,解得.选B7、A【解析】利用三个公理及其推论逐项判断后可得正确的选项.【详解】对于①,三个不共线的点可以确定一个平面,所以①不正确;对于②,一条直线和直线外一点可以确定一个平面,所以②不正确;对于③,若三点共线了,四点一定共面,所以③正确;对于④,当三条平行线共面时,只能确定一个平面,所以④不正确.故选:A.8、A【解析】根据对数函数的定义域,结合二次根式的性质进行求解即可.【详解】由题意可知:,故选:A9、A【解析】根据题意解得集合,再根据集合的关系确定对应的韦恩图.【详解】解:由题意,集合N={x|x2+x=0}={-1,0},∴,故选:A【点睛】本题考查了集合之间的关系,韦恩图的表示,属于基础题.10、C【解析】利用和差公式,二倍角公式等化简,再利用正弦函数的单调性比较大小.【详解】,,,因为函数在上是增函数,,所以由三角函数线知:,,因为,所以,所以故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、108【解析】设,反解,结合指数运算和对数运算,即可求得结果.【详解】可设,则,,;所以.故答案为:108.12、2021【解析】设快递行业产生的包装垃圾为y万吨,n表示从2015年开始增加的年份的数量,由题意可得y=400×(1+50%)n=400×(两边取对数可得n(lg3-lg2)=1,∴n(0.4771-0.3010)=1,解得0.176n=1,解得n≈6,∴从2015+6=2021年开始,快递行业产生的包装垃圾超过4000万吨.故答案为202113、18【解析】由指数幂的运算与对数运算法则,即可求出结果.【详解】因为.故答案为18【点睛】本题主要考查指数幂运算以及对数的运算,熟记运算法则即可,属于基础题型.14、(1)(2)【解析】(1)根据,之间的关系,平方后求值即可;(2)利用诱导公式化简后,再根据同角三角函数间关系求解.【小问1详解】∵∴,.【小问2详解】由,可得或(舍),原式,∴原式.15、【解析】根据图象可得,由题意得出,即可求出,再代入即可求出,进而得出所求.【详解】由函数图象可得,相邻的两条对称轴之间的距离为,,则,,,又,即,,或,根据“五点法”画图可判断,,.故答案为:.16、【解析】取中点为O,连接VO,BO在正三棱锥中,因为,所以,所以=,所以三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-1;(2);(3)【解析】(1)根据偶函数解得:m=-1,再用定义法进行证明;(2)记,判断出在上单增,列不等式组求出实数a的取值范围;(3)先判断出在R上单增且,令,把问题转化为在上有两根,令,,利用图像有两个交点,列不等式求出实数m的取值范围.【小问1详解】定义域为R.因为为偶函数,所以,即,解得:m=-1.此时,所以所以偶函数,所以m=-1.【小问2详解】当时,不等式可化为:,即对任意恒成立.记,只需.因为在上单增,在上单增,所以在上单增,所以,所以,解得:,即实数a的取值范围为.【小问3详解】当时,在R上单增,在R上单增,所以在R上单增且.则可化为.又因为在R上单增,所以,换底得:,即.令,则,问题转化为在上有两根,即,令,,分别作出图像如图所示:只需,解得:.即实数m的取值范围为.【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解18、(I)a=(II)答案见解析【解析】(I)由函数f(x)=ln(ex+1)+ax偶函数,可得f(-x)=f(x),解得a.(II)由(I)可得:f(x)=ln(ex+1).g(x)=f(lnx)=ln(x+1).利用函数单调性的定义确定函数的单调性即可.【详解】(I)∵函数f(x)=ln(ex+1)+ax是偶函数,∴f(-x)=f(x),∴ln(e-x+1)-ax=ln(ex+1)+ax,化为:(2a-1)x=0,x∈R,解得a=经过验证满足条件∴a=(II)由(I)可得:f(x)=ln(ex+1)∴g(x)=f(lnx)=ln(x+1)则函数g(x)在区间(0,1)上单调递增设,则,,,,,,∴函数g(x)在区间(0,1)上单调递增【点睛】本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题19、证明详见解析;(2)时,的最小值是.【解析】(1)根据函数单调性定义法证明,定义域内任取,且,在作差,变形后判断符号,证明函数的单调性;(2)首先根据函数的定义域求的范围,再根据基本不等式求最小值.【详解】(1)证明:在区间任取,设,,,,,即,所以函数在是增函数;(2),的定义域是,,设,时,,当时,,当,即时,等号成立,即时,函数取得最小值4.【点睛】易错点睛:本题的易错点是第二问容易忽略函数的定义域,换元时,也要注意中间变量的取值范围.20、(1)最小正周期,单调递增区间为,;(2)时函数取得最小值,时函数取得最大值;【解析】(1)利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得;(2)由的取值范围,求出的取值范围,再根据正弦函数的性质计算可得;【小问1详解】解:因为,即,所以函数的最小正周期,令,,解得,,所以函数的单调递增区间为,;【小问2详解】解:因为,所以,所以当,即时函数取得最小值,即,当,即时函数取得最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论