版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省瓦房店高级中学2025届数学高一上期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.二次函数中,,则函数的零点个数是A.个 B.个C.个 D.无法确定2.下列函数中,最小正周期为的奇函数是()A. B.C. D.3.已知,则A. B.C. D.4.若全集,且,则()A.或 B.或C. D.或.5.设为偶函数,且在区间上单调递减,,则的解集为()A.(-1,1) B.C. D.(2,4)6.已知直线、、与平面、,下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则7.已知为圆的两条互相垂直的弦,且垂足为,则四边形面积的最大值为()A.10 B.13C.15 D.208.已知,,为正实数,满足,,,则,,的大小关系为()A. B.C. D.9.已知的三个顶点A,B,C及半面内的一点P,若,则点P与的位置关系是A.点P在内部 B.点P在外部C.点P在线段AC上 D.点P在直线AB上10.已知正方体,则异面直线与所成的角的余弦值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知a,b为直线,α,β,γ为平面,有下列四个命题:(1)a∥α,b∥β,则a∥b;(2)a⊥γ,b⊥γ,则a∥b;(3)a∥b,b⊂α,则a∥α;(4)a⊥b,a⊥α,则b∥α;其中正确命题是__12.已知函数的图象过原点,且无限接近直线,但又不与该直线相交,则______13.已知,则____________.14.圆的半径是,弧度数为3的圆心角所对扇形的面积等于___________15.定义A-B={x|x∈A且xB},已知A={2,3},B={1,3,4},则A-B=______16.已知函数,:①函数的图象关于点对称;②函数的最小正周期是;③把函数f(2x)图象上所有点向右平移个单位长度得到的函数图象的对称轴与函数y=图象的对称轴完全相同;④函数在R上的最大值为2.则以上结论正确的序号为_______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,简车上的每一个盛水筒都做匀速圆周运动.如图,将简车抽象为一个几何图形(圆),筒车半径为4,筒车转轮的中心O到水面的距离为2,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M对应的点P从水中浮现(即P0时的位置)时开始计算时间,且以水轮的圆心O为坐标原点,过点O的水平直线为x轴建立平面直角坐标系.设盛水筒M从点P0运动到点P时所经过的时间为t(单位:),且此时点P距离水面的高度为h(单位:)(在水面下则h为负数).(1)求点P距离水面的高度为h关于时间为t的函数解析式;(2)求点P第一次到达最高点需要的时间(单位:).18.已知函数的图象如图(1)求函数的解析式;(2)将函数的图象向右平移个单位长度得到曲线,把上各点的横坐标保持不变,纵坐标变为原来的倍得到的图象,且关于的方程在上有解,求的取值范围19.已知函数定义域是,.(1)求函数的定义域;(2)若函数,求函数的最小值20.如图,已知正三棱柱的底面边长为2,侧棱长为,点E在侧棱上,点F在侧棱上,且(1)求证:;(2)求二面角的大小21.刘先生购买了一部手机,欲使用某通讯网络最近推出的全年免流量费用的套餐,经调查收费标准如下表:套餐月租本地话费长途话费套餐甲12元0.3元/分钟0.6元/分钟套餐乙无0.5元/分钟0.8元/分钟刘先生每月接打本地电话时间是长途电话的5倍(手机双向收费,接打话费相同)(1)设刘先生每月通话时间为x分钟,求使用套餐甲所需话费的函数及使用套餐乙所需话费的函数;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】计算得出的符号,由此可得出结论.【详解】由已知条件可得,因此,函数的零点个数为.故选:C.2、C【解析】根据题意,分别判断四个选项中的函数的最小正周期和奇偶性即可,其中A、C选项中的函数先要用诱导公式化简.【详解】A选项:,其定义域为,,为偶函数,其最小正周期为,故A错误.B选项:,其最小正周期为,函数定义域为,,函数不是奇函数,故B错误.C选项:其定义域为,,函数为奇函数,其最小正周期为,故C正确.D选项:函数定义域为,,函数为偶函数,其最小正周期,故D错误.故选:C.3、B【解析】,因为函数是增函数,且,所以,故选B考点:对数的运算及对数函数的性质4、D【解析】根据集合补集的概念及运算,准确计算,即可求解.【详解】由题意,全集,且,根据集合补集的概念及运算,可得或.故选:D.5、C【解析】由奇偶性可知的区间单调性及,画出函数草图,由函数不等式及函数图象求解集即可.【详解】根据题意,偶函数在上单调递减且,则在上单调递增,且函数的草图如图,或,由图可得-2<x<0或x>2,即不等式的解集为故选:C6、D【解析】利用线线,线面,面面的位置关系,以及垂直,平行的判断和性质判断选项.【详解】A.若,则或异面,故A不正确;B.缺少垂直于交线这个条件,不能推出,故B不正确;C.由垂直关系可知,或相交,或是异面,故C不正确;D.因为,所以平面内存在直线,若,则,且,所以,故D正确.故选:D7、B【解析】如图,作OP⊥AC于P,OQ⊥BD于Q,则|OP|2+|OQ|2=|OM|2=5,∴|AC|2+|BD|2=4(9-|OP|2)+4(9-|OQ|2)=52则|AC|·|BD|=,当时,|AC|·|BD|有最大值26,此时S四边形ABCD=|AC|·|BD|=×26=13,∴四边形ABCD面积的最大值为13故选B点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小8、D【解析】设,,,,在同一坐标系中作出函数的图象,可得答案.【详解】设,,,在同一坐标系中作出函数的图象,如图为函数的交点的横坐标为函数的交点的横坐标为函数的交点的横坐标根据图像可得:故选:D9、C【解析】由平面向量的加减运算得:,所以:,由向量共线得:即点P在线段AC上,得解【详解】因为:,所以:,所以:,即点P在线段AC上,故选C.【点睛】本题考查了平面向量的加减运算及向量共线,属简单题.10、A【解析】将平移到,则异面直线与所成的角等于,连接在根据余弦定理易得【详解】设正方体边长为1,将平移到,则异面直线与所成的角等于,连接.则,所以为等边三角形,所以故选A【点睛】此题考查立体几何正方体异面直线问题,异面直线求夹角,将其中一条直线平移到与另外一条直线相交形成的夹角即为异面直线夹角,属于简单题目二、填空题:本大题共6小题,每小题5分,共30分。11、②【解析】对于①,,则,位置关系不确定,的位置关系不能确定;对于②,由垂直于同一平面的两直线平行知,结论正确;对于③,,则或;对于④,,则或,故答案为②.【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.12、##0.75【解析】根据条件求出,,再代入即可求解.【详解】因为的图象过原点,所以,即.又因为的图象无限接近直线,但又不与该直线相交,所以,,所以,所以故答案为:13、【解析】求得函数的最小正周期为,进而计算出的值(其中),再利用周期性求解即可.【详解】函数的最小正周期为,当时,,,,,,,所以,,,因此,.故答案为:.14、【解析】根据扇形的面积公式,计算即可.【详解】由扇形面积公式知,.【点睛】本题主要考查了扇形的面积公式,属于容易题.15、{2}【解析】∵A={2,3},B={1,3,4},又∵A-B={x|x∈A且xB},∴A-B={2}故答案为{2}.16、②③④【解析】利用辅助角公式、二倍角公式化简函数、,再逐一分析各个命题,计算判断作答.【详解】依题意,函数,因,函数的图象关于点不对称,①不正确;,于是得的最小正周期是,②正确;,则把函数f(2x)图象上所有点向右平移个单位长度得到的函数,函数图象的对称轴与函数y=图象的对称轴完全相同,③正确;令,则,,当时,,所以函数在R上的最大值为2,④正确,所以结论正确的序号为②③④.故答案为:②③④【点睛】思路点睛:涉及求含有和的三角函数值域或最值问题,可以通过换元转化为二次函数在闭区间上的值域或最值问题解答.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(t≥0)(2)【解析】(1)根据题意,建立函数关系式;(2)直接解方程即可求解.【小问1详解】盛水筒M从点P0运动到点P时所经过的时间为t,则以Ox为始边,OP为终边的角为,故P点的纵坐标为,则点离水面的高度,(t≥0).【小问2详解】令,得,得,,得,,因为点P第一次到达最高点,所以,所以.18、(1)(2)【解析】(1)由函数图象先求出,,进而求出,代入一个特殊点求出的值;(2)先求出图象变换后的解析式,再求出在的取值范围,进而求出的取值范围.【小问1详解】由图象最高点函数值为1,最低点函数值为,且,可知,函数最小正周期,所以,因为,所以,故,将点代入,可得:,因为,所以,所以.【小问2详解】由图象变换得:,当时,,,关于的方程有解,则.19、(1)(2)【解析】(1)由定义域,求得的定义域即为所求;(2)求函数的值域,再代入求最值【详解】(1)的定义域是,即的定义域是,所以的定义域为;(2),令,,,即,所以,当时取到【点睛】求函数值域要先准确求出函数的定义域,注意函数解析式有意义的条件,及题目对自变量的限制条件,复合函数相关问题要注意整体代换思想20、(1)证明见解析;(2).【解析】(1)根据几何体的结构特征,可以为坐标原点,分别为轴和轴建立空间直角坐标系,写出各个点的坐标.(1)证明即即可;(2)分别求出平面的一个法向量为和侧面的一个法向量为,根据求出的法向量的夹角来求二面角的大小.试题解析:建立如图所示的空间直角坐标系,则由已知可得(1)证明:,所以.(2),设平面的一个法向量为,由,得,即,解得,可取设侧面的一个法向量为,由,及可取.设二面角的大小为,于是由为锐角可得所以.即所求二面角的大小为.考点:空间向量证明直线与直线垂直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度上海市高校教师资格证之高等教育心理学题库练习试卷B卷附答案
- 2024年创新项目立项合作细则合同版
- 2024年农田承包协议样本版
- 2024年施工方安全免责协议范本版
- 电变压器相关项目实施方案
- 直发夹板相关项目建议书
- 安装工程承包责任具体合同版
- 机器学习算法与实践 教案全套 郭羽含 第1-12章 机器学习概述-神经网络
- 滑雪装备包项目评价分析报告
- 废热发电机相关项目建议书
- 最新变压器运行规程
- 元宝枫籽油加工可行性研究报告
- 大学新进人员岗位聘用申请表(管理岗位)
- 质量管理体系成熟度评价指南
- 脑肠轴与情绪行为课件
- 外科学课件-门脉高压症
- 部编版小学六年级下册群文阅读含试卷(带答案)
- 中国城市中英文对照
- 《值机与行李运输》教学课件项目六特殊行李运输
- 《道路工程》word版
- Oracle数据库Sql语句详解大全课件
评论
0/150
提交评论